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Ouitline

How do we maximize the value of distributed
energy resources?
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generation response
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building demand
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Optimize micro-grid
design and operation
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Rhysical building modeling

Temperature / Humidity response
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» Energy and mass balances: zones / surfaces / moisture
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MidlitipleNiimesScales

*Temperature
sl oads
o Utilities

|—>24 Hours

*Generators
eHeaters/Chillers
'Energ*,f Storage

|—>24 Hours

*S0C

*Time
*Demand |—> 15 min to 1 Hour

*Re-optimize DER

*Apply MPC

*Adjust generator set-points I—>60 Seconds , I" 1 sec

*Distribute un-metload between grid and ES

Balance

F <1 sec
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Overview off IMIP.C

Feedback

v |
Model-
Desired Output
e5|rer(t)upu > based |E[()tl),lt > Process O;J(’Etg)uta
Optimizer

» MPC: Uses a DYNAMIC model to
PREDICT the future response of
the plant and OPTIMIZE the

control signal

» Receding Horizon: solve an
optimal control problem over a
finite future horizon of N steps,
and implement the control action
of the 1% step

Apply 15t step only, then repeat optimization
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Constiraimt Hamndling

» An optimal input trajectory is only optimal if it satisfies
constraints
> MPC embeds constraints into the optimization
> Most control strategies (e.g. PID, lead-lag) implement constraints through
design & tuning (saturation, overshoot)
» Ex) Filling a tank with a Pl control law
> Good speed of response, good settling time...
> Typically allow for 25% overshoot
> What if we are trying keep the tank full near its maximum constraint?

Predictive control will propose a trajectory
which allows the tank to overflow

Nor will it allow an input that is not

before the constraint is reached

The rise time might be slower, but it will be
Works like auto-tuning maximum control input to the
current operating point
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ierarenal IPRE OVverview

Forecast
(load & prices)

Threshold

On-Line Optimization OFF
(<1min)
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MidlitipleNiimesScales

*Temperature

eLoads |—>24 Hours }

e Utilities

*Generators

*Heaters/Chillers I_>24 Hours

*Energy Storage

*Time
*Demand I_> 15 min to 1 Hour

*S0C

*Re-optimize DER A

*Adjust generator set-points I—VGO Seconds . I" 1 sec

* Apply MPC J

*Distribute un-metload between grid and ES F <1 sec

Balance
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Forecast Methods
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» Physical modeling 2w

» Multi-dimensional 212
modeling g0

» Auto-regressive £
techniques T
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= Smoothed Temperature

= —Actual Temperature
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Temperature °C
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—Historical Temperature
—Yesterdays Temperature
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MidlitipleNiimesScales

*Temperature

*Loads I_>Z4 Hours

e Utilities

*Generators

*Heaters/Chillers I_>24 Hours

'Energ*,f Storage

*Time
*Demand I_> 15 min to 1 Hour
*50C

*Re-optimize DER

*Adjust generator set-points I—VGO Seconds . I" 1 sec

* Apply MPC J

*Distribute un-metload between grid and ES F <1 sec

Balance
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Ten Micro-gridiDispatchi Challenges

Non-linear equipment performance

Discrete states (on/off)

Energy storage: Electric, thermal, mechanical
Equipment start-up and response rates
Transmission limitations and losses

Integrated energy systems: heating + cooling + electric
Energy market participation

Resilient solutions: spinning/non-spinning reserve

gor ool onol ge e D b=

Fast solutions
10. Benchmarking solution speed and robustness
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1S Non:Linearegulipment pekformance

» The efficiency of a

) $/hr
generator, chiller, or -
. . = —‘———' ‘~~N
boiler is not constant = e n
» Efficiency may depend S g
e ’
on external factors a %h
> Humidity, air temperature, cooling | |
tower return water temperature . |
0 prmin Generator Output (kW) pme

» QOperation window may

400

not be continuous from ol | e
off to full power 300 g
. I e

» ‘Instantaneous’ optimal L1 N s el

200

map solves for lowest
net cost to produce
kW of power

180

Met Generation (kM)

100+

Operating Cost ($/kWh of generation)

a0+

0
0 50 100 150 200 250 300 350 400

Demand (kW)
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2. Discrete equipment statest(on/ofif)

» A piecewise quadratic fit
can approximate as convex
function

m
Costy = F(Pgen) =apt Z{aj $Sj bj ' S]'Z}
=1

» But.... enforcing operating
limits requires a binary
constraint

Uy - P™M" < P, < Uy - PM¥

» Mixed-integer problem: 2¢

> Even system of only 3 generators
has 8 possible configurations
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3. Energy Storage

» Instantaneous value of stored energy? =

> marginal utility at any and all future times
> Thermal storage can provide ‘value’ to electric dispatch

» Links together time-steps increases
mixed-integer problem: 26N

> 3 generators @ 24 hourly intervals has 4.7x10?! possible
configurations

» Charging/Discharging efficiency
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|

I i
It
it
il

N—go@-:mulz-w»

I
I
I
|

b _ 150G, —SO0Ci1} - by > {$0Cy — SOCy—1} ( 1 nd)
- Aty ~ - Aty e
» Self-discharging losses & ¢ =0

> Fixed rate (k) and proportional to state-of-charge (k*)
{S0C, — (1 — k" - Aty) - SOCy_1 — K} g
Py = — At "
» End of horizon constraint
> Fixed at a value, e.g. 50% S0CN=50%
> Equal to current status, i.e. zero net charge SOCy=50C,
> Floating value

1
F(SOCy) = a; - SOCy + 5@z . SOCy*
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4. Equipment response & startup

» Full range, P™" to P™#, not always available

A

|Pk _Pk—ll < phax Atk

LL5

v

History

» Like energy storage, this constraint links time-steps
» Start-up: extra fuel, wear and tear results in additional cost

> Also links time-steps and requires binary variable

N
F(U) = ) Corare * Wi > 0 & Uy = 0)
k=1
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5aliransmissionk DE Powelr Elow,

» Known line energy flow direction:

>  Losses are fixed, ¢, or proportional, &, to energy transfer
> Loss terms are 0, -1 in sending node energy balance

Gj Sj Tj
Vik ) P+ B+ ) §P-Lt =Ly
i=1 r=1 =1 K
» Unknown energy flow direction:

Gj Sj Tj
Vik 1) P+ ) (B=g)+ ) (Pi-o.)p =Ly
i=1 r=1 =1 k

o,=2P-(1—-1n,) & 0,20
o.=>P-1—-nn.) & o0.20

© Dr. Dustin McLarty, 2018

District heat or river
network has known flow
direction

Electric Network has
unknown flow direction
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5 iransmission:AC Rower Flow

» Apparent Power: S = max(V) - max([)

» Real Power: P =S"-cos(0) T — I
» Reactive Power: Q =S -sin(0) \(\ /

» Power Flow Equations: /\
N

Pi= ) VillVielGux c05(05) + By sin(03e)

Q; = Z [VilIVi|(Gig sin(8;) — By cos(0;y))

k=1
» Become the power flow constraints:

N
P, = GpmXm + Z el 7o / >
n= 1n¢m >
Q

Om = —BmmXm — 2 BrinYmn — GmnZmn
n=1n+m
» Voltage and line current: Voltage stability constraints,
2 2 . .
Umpin = Xm < Voo and line current constraints,
2 2 i
(G2, + B2,) Oy + X1y — 2Y) < nmmax assume fixed transformer tap

' ' i settings
» Unit commitment: Uy - S™"” < P2 + Q2 < Uy - Sax? 8
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61 Integrated energy.

» Heating
> Related to electric problem through CHP and building energy balance
CHP B
vk z <1_ )P+ZH +Z(H qbr)+ZEHl ZHb Hypss =ZH
i=1 b=1

j=1
Uy - H™" < Hy < Uy - H™

» Cooling & Cooling Tower Loop

> Related to electric problem through power consumption of electric chillers and cooling tower fans
Chiller

vk ) C+Z(c ¢»+Z€a e =Zcb

=1

j=1
Uy - CMN < ¢, < Uy - €™M

m
E(HRy), = Z} (@ Sjx) — Ay (WT, — WTeor)

E(C); = Uy <a0 + Z{aj - C; + b; - Cf}) + A, (WT), — WTsep)

Chiller
WT, =WTy_ 1 + —— z (€ + E(C)y — z(HRf)
CapcoolLoop
20/30
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7 Emergy Maket E@@ﬁﬁ@ﬁ@@ﬁﬁ@m

How will DER participate?

> Differences in bidding/settlement between markets

RTO
England

>

v

Grid West:

> Contract Options: & PIM

PJM West
+ Like DR, fixed pre-negotiated commitment California ISORES
> Bidding options:
+ Day-ahead, hour-ahead WestConnect Srid Florida

> Regulation market? ERCOT ISO

» How do you optimize your participation?

> Forecast LMP?

> Bid only after meeting self reserve requirements?
. ) ) [ System Transmis;ion Cosp of
> Biding flexible capacity (storage)? e $ | Cogesion |dp [ wergna

F(MCpig)r = B+ LMP,

» Meeting your firm commitment
G Chiller
Vk zPi'l' T'ld+2(P (pr)_ Z E(C)k ZE(HR]‘)R_(MCcommit'l'MCbid)k =Lk
i=1
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8 Spinningrand non=spinning resenve

» Cumulative spare capacity must exceed requirements
G S B
). SR+ ) SR+ ) DRy = SRearget + MRoommitted + MRoia
l= r

» Each type of equipment has reserve constraints
SRk < (Pr—1 — (P)r + 1™ - Aty SRk < (SOC) -1 - Ma/Aty

{(SOCr)k _ (SOCr)k—l} "Na

SRk < P, — (P (SR, < B — A7
k

» How to avoid double counting battery ‘reserves’?

> Can you double count energy storage reserves?
> What is the probability at any moment that the reserve capacity is used?
>  Which reserves do you use first: generation or storage?
N
Vk (SRr)k ) Atk < (SOCr)k *Nd

t=k
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9. Fast Selutions

» Start with a simplified problem
> No binary states

» Eliminate impossible solutions
G S

Z{Pimm ) Bi,k} + Pgridmm + z Prmm < Lk il Punctrlk
T

i=1
G

S
S Z{leax . Bl,k} + Pgn_dmax + z Prmax

i=1

» Solve the time steps independently
» Incorporate start-up costs

A

$ Determine Shortest Segment

* Generator offline for short period

Keeping this ghenerator There is an alternate option
running ; (l:\| 0eaper with lower start-up cost

No ¥
Ignore this segment Update Dispatch Power and Yes  Can the segment be
Recalculate SOC, avoided?
I | No ¥

L |5 there sufficient storage
Yes | capacity to shift the energy
to when the generator
Ignore this segment 4—

No previously shut down?
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Calculate marginal energy costs

\

/  Repeat for Ntime stepsk=1,2,,.N

Determine feasible combinations

Convert state of charge to power

Test all feasible options

- o o o o o —

‘. Update energy storage state for k+1 /

Check start-up costs vs. marginal cost of
alternate options at each step

i Opinzton (8 st

» Put all the pieces
together

2N~G - N2G
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9. Very East Sollutions

» Neural network 2VE S N-2¢ -1

N Net Predicted Initial -
Utility Demand Setpoint Condition

y \\A —

Unit
commitment

» Network training can implicitly improve robustness

I Elec Utility Il ICE [ mGT

I Elec Utility [llICE [ mGT

ration (kW)
ation (kW)

Gene
o
Gener:
@

24/30

© Dr. Dustin McLarty, 2018



110. Benchmakrking and roblstness

» Modeling error

4 Inirial
Overshoot

Underdamped
1.0

105
W00 [T

,,,,, Step Input St
Critically Damped
¢ =10

Overdamped
¢ 1.0

Ramp rate in '
optimization

= _g ! % Maximum
5 S Signal
ped
7 Q
g 2

@)

0 I :
Settling
(15 - | 1 | 0 Time B
Pin| pmax

Generator Output (kW)

» Forecast uncertainty

Percentage increase in prices on a year earlier
7

| | | 1 | | |

1

» Single-case optimal,

»

or in-practice costs?
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© mcQP cQP EMI mcQP cQP FMI
E— E—

Time t (s)

What optimization sees

Disturbance
rejection

> OKto change plan 12+ hours
from now
> Less desirable to change plan

15 min from now

Figure: Distribution of operating costs
for each optimization of the 24-hour
horizon for winter (left) and summer
(right). Identical initial conditions are used
for solving the mcQP, cQP, and FMI
methods. Red crosses indicate outliers
which are data points farther than 2.7¢
from the median.
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ExampllesSelving therdispatchihokizon

400 : ; i i — 1000 400 — 1000
(A) = @ = Battery State I_ (B)
of Charge (SOC)
I Bat Discharge L[]
300| [ Bat Charge i l {750 300} {750
I ] I I
= -
= 200t ] l oo 2 £ 200} 4500 i
== - © x, @
= > >
S & o <
g S B S
g 100 {250 & 100 250 ©
i c i It
©® 5 O =z
o @
0 0 0 0
&2 1 1 1 1 1 1 <, . 1 1 1 1 1 1 .
o 4 8 12 16 20 2 20 e 4 8 12 16 20 2 20
Time (hour) Time (hour)
Feed-forward Approach H-MPC Approach

General Solution: 5 generators @1 hour resolution requires evaluating 1.33e+36 QP
problems, each with 360 states

Feed-Forward Solution: Solve 32 optimizations with 15 states at each time step (24
hours = 768 total optimizations)

H-MPC Solution: solve 768 QP optimizations with 15 states plus 2 QP optimizations
with 360 states.

Neural Network Solution: Solve 1 optimization after network determines unit
commitment
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Eilcient Aloceen e @rFic) EnNCRRY

RESEUIFEES INCIUEINE Storerge

Forecast
(Load&prices)

On-Line Optimization

(<1min)
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EAGERS ApplicationConfigulration

Server A (On Site

Historian Agent SQL Database
B Controller CBuilding &
omponents
Market Agent
Weather Agent
Online
Resources

Server B (In the cloud)

Stand Alone Agent ?SQLite

o Results
Optimization

(EAGERS) ? ==
[ SQLite APACHE | e , -
Inputs Web Portal

» Zero licensed software and no new installations

» Single connection point to Volttron which
communicates with buildings and equipment
through BACnet

» Planning tool useful for equipment sizing and impact
studies
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Resiullts'— Grid Ranity Cost
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