Artificial Neural Network Trained with Complementary Quadratic Programming for Realtime Unit Commitment and Microgrid Optimization Dispatch with CHP

Nadia Panossian
Washington State University
Dr. Dustin McLarty
Clean Energy Systems Integration Lab
ANN trained with cQP for Realtime Unit Commitment and Microgrid Optimization

- Introduction of problem
- Review dispatch techniques
 - cQP techniques
 - ANN techniques
- Compare Artificial Neural Network results to complementary Quadratic Programming Results
Problem: Smart Grid Management

\[\sum Dem + Dem_{stor} = \sum Gen + Gen_{stor} \]
\[\sum Dem_E + Dem_{storE} = \sum Gen_E + Gen_{storE} \]
\[\sum Dem_C + Dem_{storC} = \sum Gen_C + Gen_{storC} \]
\[\sum Dem_H + Dem_{storH} = \sum Gen_H + Gen_{storH} \]

\[\text{min}(Cost = \sum F_{cost}(Gen)) \]
Problem: Mixed Integer Optimization Problem

- Zero intercept fit (Fit A)
 - Allows generator to shutdown/start up
- Non-Zero intercept fit (Fit B)
 - More accurate fit

Discontinuous lower bound \rightarrow On/Off Decision \rightarrow Unit Commitment
Problem: Economic dispatch requires solving unit commitment

- Generators:
 - Non-zero lower limit on power output
 - Non-linear efficiency curves
 - CHP use

- Energy Storage:
 - Optimal use requires dispatch planning over the entire horizon

- Generators:
 - Startup Costs require evaluation over entire horizon

Number of Dispatches to Check = \(2^{(\text{number of generators})(\text{number of timesteps})}\)

- To find minimal dispatch cost, must run an economic dispatch for all combinations of generators (off/on) at all timesteps
Complementary QP Technique Overview

<table>
<thead>
<tr>
<th>Zero-Intercept Optimization</th>
<th>Unit Commitment</th>
<th>Non-Zero-Intercept Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 optimization</td>
<td></td>
<td>1 optimization</td>
</tr>
<tr>
<td>Estimate Storage Dispatch</td>
<td></td>
<td>Full Generator and Storage unit commitment and dispatch</td>
</tr>
<tr>
<td>nS x 2^(nG) optimizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finds optimal combination at each step for unit commitment over the horizon</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Artificial Neural Network fundamentals

- Sorting
- Pattern recognition
- Image processing
- Training
 - Synapse connections “strengthen” until desired output is produced

ANN Technique

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>cQP for historical data
Length of historical data x (nS \times 2^nG)</td>
</tr>
<tr>
<td>2</td>
<td>Train Network
1 optimization</td>
</tr>
<tr>
<td>3</td>
<td>Use Trained Network
1 matrix multiplication</td>
</tr>
<tr>
<td>4</td>
<td>Non-Zero-Intercept Optimization
1 optimization</td>
</tr>
</tbody>
</table>
Comparison of ANN and cQP

Complimentary Quadratic Programming

- Dispatch computational demand increases as \(nS \times 2^{(\text{number of generators})} \)
- Evaluates entire search space
- No training data required

Artificial Neural Network

- High computational efficiency
 - 1 time through network
- Simple ANN can be used for unit commitment
- Training data required
Test Setup: Campus Microgrid

Electric
- 1 Internal Combustion Engine
- 1 Microturbine

Heat
- Waste heat from ICE
- Waste heat from mGT
- 1 Hot Water Tank (storage)

Grid Connection
- Electric Utility with time of use pricing
- Gas Utility with flat rate pricing
Dispatch Comparison

cQP: 0.8813 s/dispatch

ANN: 0.0392 s/dispatch

cQP Computational demand increases as:

\[nSx2^nG = 24x2^2 = 96 \]

ANN Computational demand remains the same regardless of number of generators:

1 time through ANN
Test Setup of larger grid: Campus Microgrid

Electric
- 2 CHP Fuel Cells
- 2 CHP microturbines
- 1 non-CHP microturbine
- 1 Diesel Generator
- 1 Battery
- 1 Solar PV Array

Cooling/Heat
- 3 Chillers
- 1 Absorption Chiller
- 1 Cold Water Tank (storage)
- 1 Heater
- 1 Hot Water Tank (storage)

Grid Connection
- Electric Utility with time of use pricing
- Gas Utility with flat rate pricing
Dispatch Comparison

cQP: 16.2207 s/dispatch

ANN: 0.03809 s/dispatch

cQP Computational demand increases as:

\[nS \times 2^n \times nG \times 2^n \times 2^4 = 24 \times 2^6 \times 2^4 = 24576 \]

Standard deviation: 0.1785 sec

ANN Computational demand remains the same regardless of number of generators:

1 time through ANN

Standard deviation: .0501 sec
ANN Structure and Training

Zero Intercept Optimizaion (SetPt0): component setpoints over entire horizon given by the Zero Intercept fit optimization.

Generator Setpoint (GenCost): (constant) generator setpoints over entire horizon.

Generator Heat Ratios (HR): ratio of heat out to power out (constant).

Generator Costs (GenCost): O&M (constant), Fuel (time dependent).

Demand (Dem): Electric, Heat, and Cooling over time horizon.

Heater and Chiller Efficiency (HCeff): electric/fuel/heat in to heat/cooling out (constant).

Unit commitment
Conclusion

- ANN Techniques can replicate and improve upon conventional unit commitment techniques
- ANN Techniques have potential for expansion to include dispatch as well as unit commitment further reducing computational demand
- ANN Techniques have potential for expansion to include non-linear demand relationships such as active-reactive power
References

Potential Expansion of ANN

- Current ANN is very simple
- Multilayered ANN could be used for unit commitment and dispatch
- Change from 3 steps, to 1 step
- Active-Reactive Power and other non-linear relationships