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The lumped state approximatidhSA) is a method for handling boundary conditions for diffusion

on an interval which simplifies the description of transitions into and out of the interval. It was
originally motivated by the problem of proton conduction through the ion channel gramicidin. This
paper discusses the mean first passage time of a diffuser crossing a potential barrier in the lumped
state approximation. The LSA mean first passage time is shown to be identical to a different
quantity, the interior mean first passage time, clarifying the nature of the approximation. We also
discuss a variant of the LSA in which dependence on an applied electrical potential is made explicit;
an optimal value for an effective electrical distance is found. A detailed comparison is made of the
LSA mean first passage time with several other formulations of the mean time to cross a barrier.
© 2001 American Institute of Physic§DOI: 10.1063/1.1330215

I. INTRODUCTION axes are oriented perpendicular to the plane of the mem-
brane. The pore of the dimer has the dimensions of approxi-
This paper describes the lumped state approximatiomately ten water molecules in single file.
(LSA), a method for handling boundary conditions for diffu- Pome and Roux have carried out molecular dynamics
sion on an interval which simplifies the description of tran-simulations of gramicidin with® and without a single ex-
sitions into and out of the interval. The first section describesess proton. From these simulations, potentials of mean force
the problem which motivated the introduction of this are calculated as a function of the reaction coordinates,
method, namely the mechanism of proton conductiorwhich are proportional to the axial components of the dipole
through the ion channel gramicidin. References 1 and 2 inmoments of the pore contents. References 1 and 2 obtain
troduced the LSA in order to make this problem ana|ytica||ydiffusion coefficients for these reaction coordinates from
soluble. The next section discusses the derivation of the diftheir velocity autocorrelation functions. They then construct
ferential equation for the mean first passage time to diffus@ frameworkmodel, designed to incorporate the information
across an interval with boundary conditions incorporating thd"om molecular dynamics and use it to calculate conduc-

LSA. This mean time is then compared with exacttime to tancFe's whicgari corrr:pared' witlr}'egperirpent. . .
cross the barriefthe mean time to cross from the potential igure {A) sketches a simplified configuration space for

minimum on one side to the minimum on the othend an proton conduction through gramicidin, as described by the

interior mean time that is closely related to the exact timeframework model. The top or proton segment represents the

. T | . domain of a reaction coordinate which follows the progress
The LSA mean first passage time is shown to be identical tg .

o : . L of the center of excess charge through the pore from side | to
the interior mean first passage time, making it easy to char-

e the diff b he LSA and . side Il. The bottom or reorientation segment represents the
acterize the ditference between the and exact mean firgf, 1 ain of a reaction coordinate which follows the reorienta-

passage times. We also analyze an effective electrical dig;y,, of water molecules in aemptypore, that is, one without
tance(EED) variant of the LSA in which dependence on an 4 excess proton. In the empty pore, waters tend to be close
applied electrical potential is made explicit. This was used ing one of the two idealized configurations with the axial
the analysis of proton conduction. Below, we find a f0rmU|acomponents of the dipole moments aligned. A useful simpli-
for the optimal effective electrical distance. In the numericalfication is to imagine that there is a defect in the packing of
computations section, these different ways of computing thgore waters about which the axial components of the water
mean first passage time to cross a barrier are compared witlipole moments turn. Reorientation of the pore waters can
each other and Kramers's escape rate théory. then be visualized as due to the diffusion of the defect from
one end of the column to the other.

Consider a trajectory around the cycle in FigAl For

Gramicidin A is a linear pentadecapeptide consisting ofexample, suppose an excess proton enters the pore on side |
alternating L and D amino acids. The ion conducting confor-and exits on side Il. Ilmediately after the proton leaves the
mation in membranes has been established by nuclear magere, the water column may be left in a range of orientations.
netic resonanc&® An N-terminal to N-terminal dimer is These can be visualized by supposing the defect could be
formed by two single-stranded right-handedhelices whose located anywhere in a boundary region near one end of the

A. The proton conduction model
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charges of the water molecules used in the simulationis
A ' proton ' g %

rescaled to giveu, the axial component of the dipole mo-
ment of the pore contents. The scaling is giveniby ay,
where a~0.435 assumes that pore water dipole moments
have magnitude 0.2y,A, within the range of estimates
given by Duca and JordahThe axial component of the pore
dipole moment is negative in the lower right hand cartoon of
l . Il ' Fig. 1(A) and positive in the lower left hand cartoon. Corre-
spondingly, the abscissa of Fig(B) advances from right to
1. ® left.
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A . reorientation . ’

The units of the ordinate of Fig.(R) are energy, given
in kgT, whereT=298 K. The figure shows thiatrinsic po-
tential of mean force for water reorientatibh,®, and the
potential energy due to an applied transmembrane potential,
Wy V¥, as a function ofy. The word intrinsic refers to all com-
_ g ponents of the potential apart from the transmembrane po-
8/6/4/2/ o _4 —l6 _8 tential. In principle, this includes both short range interac-
N N g A tions between the water column and the channel as well as
Boundary Interior Boundary longer range interactions between the column and channel
Region | Region | environment. However, the simulations only included the
v channel, the pore waters, and a few waters clustered about
C proton each channel entrance. The simulations give estimatds of
aty=—-8.1-7.9-7.7,...,7.9,8.%, A. Linear interpolation
between these points completes the definition. The maximum
extent of the reorientation segment is definedoy = ua,
and the maximum extent of the interior region is defined by
® by u==*puc. The corresponding valugg, and yc are shown
in Fig. 1B). The interior region corresponds to the broad
central barrier ofb and the boundary regions to the potential
minima on either side. An applied potential is assumed to
give rise to a constant field in the pore; this is a good ap-
Vi Yn-1 Y1 N proximatci)olrll due to the cylindrical geometry of the
FIG. 1. (A) A sketch of a simplified configuration space for proton conduc- Channell' * Consequently¥" is "n‘.a"?‘r' The S.IOpe show_n n
tion through gramicidin. Cartoons sketch the configuration of pore Wateréqg' 1(B) corresponds to a positive applied potential of
near the ends of the proton and reorientation segments. The cartoon at thq=167 mV on side |, withV;;=0 by convention. We con-

lower left hand corner also shows side | and side Il of the chariBl.  sjder® and ¥ to be functions ofu. The total potential en-
Reorientation potentials of mean forde (dotg and the applied potential ergy iSW(,u) =(I>(,u) +\If(,u)

energy ¥ (line). For the example shownyxc=5.7 ;A and ya . . . .
=8.1 ey A. The reaction coordinate of the simulationsjs rescaled to the Intuitively, it seems reasonable that diffusion through the

axial component of the dipole moment of the pore contanthy u=ay, narrow pore of gramicidin has a quasi—one-dimensional char-
where a~0.435.(C) State diagram of proton conduction mechanism with acter. However, an attempt to construct a permeation theory
the boundary regions lumped into discrete poirﬁt;%) T_he random walk of single proton conduction through gramicidin by scaling
model used to construct the lumped state approximation. L . .
transitions directly between the endpoints of the proton and
reorientation segments of Fig(A) does not produce a sat-

channel: near side | for the defect sketched in the figure. Ifsfactory result? Instead, it is necessary to assume that tran-
pore waters then rotate to reverse the dipole moment of thgitions are possible to and from intervals on the reorientation
pore contents, the electrostatic interaction will again favorsegment—the boundary regions. With two continuous sets of
proton entry on side I. The defect must cross the pore interiotransitions between the proton and reorientation segments,
to reverse the dipole moments. When it is located in ahe dynamics of the single proton model would no longer be
boundary region on the other side of the channel, anothestrictly one-dimensional. The LSA assumes that these re-
proton can enter on side |. Possible transitions between thgions of higher-dimensional dynamics are localized near the
proton and reorientation segments are suggested by the tvahannel entrances. Transitions are then simplified by lump-
pairs of dashed lines. The reorientation segment is thus ding the boundary region betweenAu, and —uc into a
vided into three regions: boundary regions | and Il wheresingle point, the boundary stalg , and the boundary region
transitions to and from the proton segment can be made, argetweenuc and w, into the boundary state,. Figure 1C)
the interior of the reorientation segment, between the boundshows the state diagram of the resulting proton conduction
ary regions. model. Instead of a continuum of possible transitions be-

The abscissa of Fig.(B) is the orientation moment of tween the two segments, there is only a single transition at
the pore contentg, the reaction coordinate of the molecular each end. This allows the proton conduction model to be
dynamics simulations. This quantity is defined by the formalsolved analytically.
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Il. LSA MEAN FIRST PASSAGE TIMES The transition probabilities may be expanded in the

_ small parameten™?! to give a useful expression for large
Figure D) represents the random walk model used o1 expansion gives

construct the lumped state approximation of the mean first

passage time. This will ultimately result in a diffusion pro- ¥ =AtD(AL) ™2

cess describing Brownian motion of the reorientation reac- , 2 _3

tion coordinate. Note that the indices in FigD) progress X[1=BALW (ui)2+(AL) €+ O(N"°)], (6)
from right to left, corresponding to the orientation of the 5=AtD(AL)"?
abscissa of Fig. (B). The boundary states bandb,, repre-

sent the boundary regions discretized by the LSA. States
1<i=n, are the domain of the random walk betwdgrand \yhere
b, . Each state corresponds to a subinterval of the interior
region of the reorientation segment of widthZ=L/n, €= — BW"(w)/4+ BPW' (ui)?/8. ®)
whereL=2pu. is the width of the interior region. We denote gypstitute Eqs(6) and (7) into Eq. (2), organize terms, and
by w; the dipole moment associated with state Time is  gjvide by AtD to obtain

also discrete, with constant time stdp. At each time step

X[14+BALW' (u)l2+ (AL)?+O(n" 3],  (7)

and for I<i=<n, v, is the forward transition probability from 1 —2tj+tj o+t BW (u)(ti—1—tisy)
states; to states; ;;, andd; is the backward transition prob- D (AL?) 2AL

ability from states; to states; ;. Let R represent either | or L

Il. Then g is the transition probability of entering the inte- +e(—2t+ti+ti_)+O(n™Y). (9

rior region of the reorientation segment from boundary state

br, anduy is the transition probability of leaving the interior P_uttmg ti:t_('““i)’ we recognize the f|_rst two terms on t_he
region to enter statby right hand side as first and second differences, respectively.

The limit n— then yields a differential equation fof w):

A differential equation will be developed for the mean ~1=Dt"(p) = AW () () ]. (10
time before a diffuser, starting at reaction coordinagte This equation describes the evolution of the mean first pas-
e[ —uc,ucl, first reaches state at u=uc. Consider the sage time in the interior region of the reorientation segment.
system initially at sites; where 2<i<n—1, t=t,. If Q(t)
is the probability that sites; is occupied at timet, then
Qj(to) = 6jj . The probability that the diffuser stays at site
after a time step iQ;(to+At)=1—v;— &;. The probability
that the diffuser moves forward i®;,1(to+At)=1v; and We next find expressions for the entrance and exit tran-
backward isQ;_;(to+At)=4,. Let t; be the mean time sition probabilitiesyg and vg. Under the condition of de-
before a diffuser, starting at sige, escapes tb, . After one tailed balance we have
time step, express the mean first passage time before absorp- ~b,~ _
tion as a weighted average: QUQn=nTm, (D

A. Differential equation

B. Entrance and exit transition probabilities

_— —_— —_— b =
t—At=Q(to+ AV +Qira(to+ ATy QuiQu=mlm 12
_ where QP and QY are the probabilities of the boundary
+Qi_q(to+At)t;_4. D states. At equilibrium, these are given by
Substituting in the expressions for tkk in terms of transi- LA
tion probabilities yields Q —J P(u")du', (13
. o . MC
—At=—(y+8)t+yiti 1t oitio1. 2 e
Transition probabilities are defined to satisfy the Boltzmann Qi = fﬁ P(u')du’, (14)
distribution "o
P(1) = Ke~ AW 3 where P(u«) is given by Eq.(3). Note thatQ;=P;AL

+0O(n"?), where P;=P(u;). Substitute Eq(13) into Eq.
at equilibrium, whereP () is the probability density on the (11) and Eq.(14) into Eq.(12), use the Boltzmann distribu-

reorientation segment arilis a constant. Let tion Eqg. (3), and take the limit ag— o to obtain
i=AtD(AL) 2 exp(BI2)[W(ui) —W(u; , (4
Vi (AL)"“expl (B[ W( i) = Wi+ )]} (D) i nl:a" (15
8i=AtD(AL) " Zexp{(BI2)[W(pi) —W(pi 1)1}, () n—ee 177
where=(kgT) L. D is the diffusion coefficient associated ) V)
with the coordinatex, with units of (dipole momengé/time. n“”l n_n,,:a” , (16)

AL=L/n is the distance between states. The time atefs
scaled withn so thaty; and §; remain positive and finite as where the boundary weights and a, are proportional to
n—o: At=A7/n?, whereAr is independent of. integrals over the Boltzmann distribution:
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K '
alzg—lj Ae—BAW(u )dM,y (17
Ke
—1 | T —pawin) 4
a||:£ e K d/.L . (18)
~KBA

We have introducedAW(u)=W(u)—W(urg) where ug
=uc on side | andug=—uc on side Il. The following
definitions satisfy the constraints given by Edq&5) and
(16):

v=At(DIAL?)a,, (19
V||:At(D/A£2)a|| y (20)
7]|=77||=AI(D/A£2)I’171. (21)

The transition probabilities), and v, scale withn in the

same way asy; and §;. This is consistent with modeling
transport from the interior to the boundary states as diffusive.
The scaling ofy, and 7, with n is then determined by the

Mean first passage times across a potential barrier 79

—ALID=(t,—t)/AL+ Lay D+ BW' () (t;—t,)/2
+ALe(t,—t)+O(N72), (26)

Now let n—o, so thatA £L—0. All of the terms except the
first two on the right side of Eq26) go to zero in this limit.
Hence

t'(— pe)=—Lay, /D, 27)

Next consider the boundary condition foron side |
wherei=n. Let Q,(tp) =1, Q;(to) =0, for j#n. The prob-
ability of forward movement isy; and the probability of
backward movement is5,. So Qu(to+At)=1—v,—6,,

Qn_1(to+At)=4,, andQP(ty+At)=1p,. Sincet,=0,

requirement that detailed balance be satisfied at equilibriunt-€t n— to find

In particular, the boundary states retain positive probability Tl

in the limit n— oo,

C. Boundary conditions

Boundary conditions fot are developed gtt=— uc,

on side I, the right side of the reorientation potential profile
in Fig. 1(B), and atu=uc, on side |, the left side of the

reorientation potential profile in Fig.(B). Assume the dif-
fuser starts at sité=1 att=ty. Thus Qq(to) =1, Qj(to)
=0, for j# 1. The probability of forward movement ig,;
and the probability of backward movementiig. After one
time stepQq(tg+At)=1—vy;— v, Qs(tg+At)=17,, and

Qﬁ(to+ét)=v”. The mean time before reaching side | is

initially t, and after one time step it E—At. Expressing
this as a weighted average

t_l_At:Q1(t0+At)t_1+Q2(to+At)t_2+Qﬁ(to+At()t_|l)
22

and substituting for th€'’s yields

—At=(—y1— v+ yita+ by, (23

wheret, is the mean time required for a diffuser starting at

side Il to escape to side |.

Next obtain an expression foTr, by considering a mean

first passage time problem which begins at staje Let
Qﬁ(t0)=1. After one time stepQﬁ(t0+At)=1—7;,, and
Q1(tot+At)= 7, . Hence the weighted average is

= At=Qji(to+ Aty + Qu(to+ AN, (24

The appropriate substitutions yielgy=ty+ At/ . Using
this value fort,;, Eq.(23) becomes
—At=1;(t;—t) + (v At . (25

Substituting from Eqgs(6), (20), and(21) for the transition
probabilities yields

= At=Qn(tot At +Qn a(tot At 1. (28)
With the appropriate substitutions we get

—At=—yty+ Sp(ta-1—to). (29

#c)=0. (30)

Side | is an absorbing boundary.

D. Solution

The LSA mean first passage tirF@sA( ) is the solution
of the differential equatior(10) with boundary conditions
Egs.(27) and(30). Consider first the homogeneous equation

th(u) corresponding to Eq10). Integrate twice to obtain

th()=kH(— pc,p) +ky, (31)
where
1% ’
Hrop0) = f ePMu') ! (32

M1

andk; andk, are constants of integration.

The particular solutiort,(u) is constructed from two
independent solutions of the homogeneous equation. We use
yi(u)=1 andy,(w)=H(— uc,un). The Wronskian isWW
=exd BW(w)]. Using the variation of parameters formula
yields

L=

“MC

o BW(L)

X[H(=pc,n")—H(=pc,pm)]du'’. (33

The general solution is therfu) = ty(w) +tp(x). Applying

the boundary conditions Eq&7) and(30) and simplifying
finally gives an expression for the mean first passage time
using the LSA:

Dtisal)=H(—pc ) G(— pc )
—H(=pc,n)G(—puc,u) =1 (—puc iac)
(= pc,u)+G(—pp, — pc)

X[H(=pc mc) —H(=uc,m)],
where we define the integrals

(34)
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/.L , . . . . . - . .
G(Ml,Mz):j 2 - AW(u Yy, (35) of the potential mlnlmg in Fig. B). tg, is the solution of
w1 Egs. (10) and (30) with t(umin)=t'(—ua)=0. For e
[— A Hminl:
M2 ’ o
I(,ul,uz)=f e AYEOH (g, )dpe' (36)  Dtedw)=H(—pa,tmin)G(— pa,kmin) =1 (= LA Lmin)
M1

—H(=pp,u)G(—pp, ) +H1(—pp,pm). (3
Consider a diffuser initially at boundary stdig. The mean (Zra )G par ) (= pta ) @7

first passage time to reach stdigis t, sa(— sc). The interior solutiont () is similar to the exact solution
except that one computes the mean first time to reagh

I1l. EXACT AND INTERIOR MEAN FIRST PASSAGE instead ofumin. FOr wel—pa,pcl:

TIMES

Dtj(p) =H(=pa,nc)G(—pa tc) =1 (= pa,tic)

A good characterization of the time required to cross a
potential barrier by a single number is the mean first passage “H= ) G(= pa ) (= pp, ).
time for a process, beginning at a potential minimum on one (39
side of the barrier, to reach the minimum on the other side. ) o
Therefore, we will refer to the mean first passage time for & !dentity of LSA and interior times
diffuser, starting atw e[ —ua,minl, to reachp= umiy as Using the addition property of integrals with respect to
theexactmean first passage time, and denote itpy. Here,  their interval of integration, we can rewrite the interior solu-
Mmin= Xmin» With Xmin=6.52¢ A and — i, the coordinates tion as

Dty ) =H(— pac sc) G(— e prc) + H(— pe ) G(— pa, — o) +H(— pa, — ) G(— pc, i)
+H(—pa,—uc)G(—pa, —uc) —H(—pc, u)G(—pe ) —H(— e, ) G(— pa, — pc)

) Nl
—H(—upa,—pc)G(—pc ) —H(—pa, — c)G(— ppa, — pc) — e H(—uc,u')du
7

" :
—f S PO (— pup — pc)dp’. (39)
s

Equation(39) can be simplified in the following way. The V. LSA WITH EFFECTIVE ELECTRICAL DISTANCE

fourth and eighth terms cancel, the third term cancels the |n the proton conduction mod&f the probabilitiesv g

sum of the seventh and tenth terms, and the second and sixgind 7 are explicitly dependent on applied potential. Their

terms may be combined. This results in the following: expressions correspond to making the following approxima-
tions to the boundary weightg anda; :

Dt_mt(ﬂ):H(_,LLC,/.Lc)G(_MCyﬂC)+H(M!MC) alchlfMAe*ﬁA‘b(M)eﬁﬂ‘l’ld,u, (42
XG(=pa,—pc) —H(=pc,n)G(—puc,p) te
~ — “HcC — ) —
—Jﬂce’ﬁww')H(—nc,u’)dw. (40) a =L 1f_MAe AP =BTV iy (42)
"

Compare these with Eqg17) and (18). AD(uw)=P ()

Using the addition property again, we see that formulas Eqs, © (#0) With so=uc on side | anduo=—puc on side Il.

: . — = W =¢eyV,, whereV, is the applied potential on side 1g,
(3E1) and (4(3) are identical. Thust;sa(u)=tin(u) for u with Re{l,Il}, is an average fraction of the applied potential
€L~ Mc Mcl-

! . . . drop between boundary regidR and uo. We call fr an
In pgrncular, the mean first pass.age'tlne to dn‘fusg fror“effective electrical distance in analogy with the terminology
b, to b, in the lumped state approxmqtlorLSA(—_Mc)v IS of Eyring rate theory? The f are positive; the signs of the
the same as the mean first passage time to diffuse fiom exnonents containing thés can be understood from the
=—kc 10 u=pc in the absence of the lumped state ap-sense of the electrical potential drdpshown in Fig. 1B).
Broximation, tint(— mc). Qualitatively, this suggests that Replacinga;—3, in Eq. (27), we obtain

tisa(—umc) gives a good approximation tdg.(— min) —

when the time to cross the boundary regions can be t'(=pc)=— L& /D. (43)
neglected in comparison with the time to cross the poreThe boundary condition Eq(30) on side | remains un-

interior. changed. We refer to the solution of E{.0) with these
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TABLE I. Comparison of mean first passage times across the molecular dynamics potential barrier shown in
Fig. 1(B) using various methods. Times are in nanoseconds.

Xc=4.5e0 A Xc=5.5e A xc=6.5e9 A Xmin=6.59 A
Voltage V EED LSA EED LSA EED LSA Exact Kramers’
-05 53.94 55.64 57.13 58.68 58.51 59.08 59.09 58.91
-0.2 9.93 9.98 10.20 10.24 10.25 10.27 10.27 10.19
-0.1 5.87 5.88 6.01 6.01 6.02 6.02 6.03 5.97
-0.05 455 4.55 4.65 4.65 4.66 4.66 4.66 4.61
0 3.55 3.55 3.62 3.62 3.63 3.63 3.63 3.58
0.05 2.78 2.78 2.84 2.84 2.84 2.84 2.84 2.80
0.1 2.19 2.19 2.24 2.24 2.24 2.25 2.24 2.21
0.2 1.38 1.38 1.41 1.42 1.43 1.43 1.42 1.39
0.5 0.390 0.402 0.414 0.423 0.436 0.439 0.425 0.407

boundary conditions akp, since the boundary conditions A difficulty with Eq. (47) is that f;; will, in general,
contain an effective electrical distance. The solution is depend on¥,. For the special case of proton conduction
through gramicidin, the applied electrical field in the pore is

Dtegp(p) =H(— pc uc)G(—uc. mc) approximately constarif:**and . is the axial component of
—H(— e, w)G(—pe, )= (— pe, o) the dipole moment of the pore contents. In this case we put
WV (u)=—pnE, whereE=V,/L,V, is the applied voltage and
T (—pc,pm)+O[H(— pc,pc) L is the length of the pore. Then
—H(—pc,p)], (44) AV (p)=(|u|=pm) Wi/ (gl), (49)
where and for small applied fields, we can expand Et) in pow-
O =7, expl— BW(— uc)). (45) ers of the small paramet@&@W¥,. Hence
Now examine the difference between E(4) and(44): 1=Bf W +0(2)=(1- AW (1) +O(2))y (50

— — _H 0-G or f, ¥, =(AW¥(u)),. On side | an analogous formula may
teeo() ~tisa(m) =H(p,nc)[ O~ (_MA1_MC)%;].6) be obtained. Thus in the case of a constant electric field

L within the pore

We may choosé;, to minimizetggp—1t, ga. This difference _ _

is zero if@=G(— ua,pc), of if fi=(ahi=pe)l(eol),
e A= (g AAV(RY, 47 fu={mhnl—mc)/(eol). (52)

_ o (u); and(u); may be considered effective electrical coor-
where AW (u) =W (u) =W (= pc) and(...); denotes the dinates of boundary regions | and II. Their values are optimal
expected value

for approximatingt, sp by tgep at low applied potential.
(A

(51)

V. NUMERICAL RESULTS

~rc ae
—f A(p)e AP dﬂ/ f e PPWdy. (48 In this section we compare the mean first passage times
THA “HA computed using the LSA E(34), the exact solution Eq.
Equation (47) may also be obtained by requiring that the (37), the interior solution Eq(38), the effective electrical
choice off givesg, =a . distance solution Eq(44), and Kramers' escape thecty.

TABLE Il. Mean first passage times across a uniformly rescaled potential barrier, with maximum height
reduced from the molecular dynamics value tgg%. Times are in nanoseconds.

Xc=4.5e A Xc=5.56 A xc=6.5e9 A Xmin=6.59 A
Voltage V EED LSA EED LSA EED LSA Exact Kramers’
-05 2.705 2.840 3.382 3.484 3.805 3.841 3.841 3.666
-0.2 0.506 0.509 0.568 0.570 0.596 0.597 0.597 0.534
-0.1 0.309 0.310 0.341 0.342 0.355 0.355 0.355 0.307
-0.05 0.245 0.245 0.269 0.269 0.279 0.279 0.279 0.237
0 0.196 0.196 0.215 0.215 0.223 0.223 0.223 0.185
0.05 0.159 0.159 0.174 0.174 0.180 0.180 0.180 0.146
0.1 0.130 0.130 0.142 0.142 0.147 0.147 0.147 0.117
0.2 0.0890 0.0896 0.0986 0.0989 0.103 0.103 0.103 0.0780
0.5 0.0359 0.0370 0.0419 0.0425 0.0452 0.0454 0.0450 0.0302
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Kramers’ theory assumes that the diffuser attains a quasi- We finally compare the interior solution E¢38) with
equilibrium state in a deep potential well before making athe LSA at zero applied voltage and varying between
transit over a high barrier. The corresponding mean first past.5e, A and 8.2, A. Comparisons for the molecular dynam-
sage time is ics and rescaled barriers are shown in Table Ill. The numeri-
cal results agree to seven or eight decimal digits, reflecting
1 (P2 4 o) our proof that these two quantities are the same within their
k=D e dp e du, (53 common domain. For the molecular dynamics barrier, first
= He passage times decrease by less than 1%-atecreases from
I8.1 to 5.2, A. For the reduced barrier, first passage times

wherek is the crossing rate, the barrier is in the interva i
g decrease by about 10% gg decreases in the same range.

(m1,m2) and the potential well is in the intervajug, u,).
When the top of the barrier and the bottom of the well can be

approximated by quadratic extrema, the classical rate theory; coNCLUSION
expression is obtained. However, the expression in(&8).

may be evaluated for more general barrier and well shapes. This paper obtains formulas for the mean first passage
For definiteness, we evaluate E(3) with ui=— min, time to diffuse between the boundary states, using either the

o= tmin, m3=0 andu,=—pa. HEre, wmin=axmin, With LSA or the EED variant. The latter assigns the boundary

Xmin=6.5e5 A, is the value corresponding to the potential states an effective electrical coordinate, giving an explicit
minimum in Fig. 1B) andu3=0 is the value corresponding dependence of the single proton conduction model on ap-
to the center of the barrier. plied electrical potential. The LSA mean first passage time is
The LSA does not compete with Kramers’ theory as ashown to be identical to an interior first passage time in their
method for Computing first passage times. The latter is usegommon domains. This result shows that the LSA is accurate
because of the simplicity of E¢53), and especially the sim- Wwhen the time required to cross a boundary region can be
plicity and physical clarity of the formula obtained for the neglected in comparison with the time required to cross the
case of quadratic extrema. In contrast, the formula for théore interior. Further, an optimal value is found for the elec-
LSA, Eq.(34), is as complicated as the formula for the exacttrical coordinate in the EED variant of the LSA method. Our
mean first passage time, EQ7). However, the comparison numerical results show that the single proton model incorpo-
between Kramers' theory and the LSA below will emphasizerating the LSA gives an accurate description of mean first
the accuracy of the latter approach. passage times to cross the reorientation segment when there
We first consider the mean first passage times to Cr05i§ a Significant barrier to diffusion and the boundary regions
the molecular dynamics potential of mean force, shown irare not too wide. For most of the cases considered, the LSA
Fig. 1(B). We compare mean first passage times compute@ives estimates of the mean first passage time that are more
using the LSA and EED, for three different values @f  Precise than those given by Kramers’ theory. This is espe-
= axc, with both the exact mean first passage time and thagially true when the potential barrier is low.
obtained from Kramers’ escape rate. We use the dipole dif- The LSA was introduced in order to model in a simple
fusion coefficientD=a?x 1.08(e,A)2ps %, obtained from Way proton entrance into and exit from the ion channel
the velocity autocorrelation function of the reaction gramicidin. Although transport of a proton through the pore
coordinate See Table | for the calculated values using eactseems to be well described by a single reaction coordinate, it
method. Relative errors of the LSA and EED mean first pasis necessary to take into account a range of pore water states
sage times, calculated with respect to the exact mean firét one end of the pore when the excess proton is just outside
passage time, are less than 1%, except for the casgs of the channel at the other end. These potentially higher-
=4.5%,A or V,=*0.5V. Relative errors of the Kramers’ dimensional dynamics are collapsed by the LSA. The result-
mean first passage time are less than 2%, except for the cal§® one-dimensional model can be solved analytically.
V,=0.5V. We next make the same comparisons with the
potential uniformly scaled so that barrier heights are reduced
by 4kgT; see Table Il. Relative errors are generally IargerTABLE . Comparispn of LSA and Interior mean first passage timgs for
for the reduced barrier heights. However, for the LSA andthe molecular dynamics and rescaled potential barriers. Times are in nano-
EED cases, these are still within 1% of the exact solution for econds.
xc=6.5e A and within 5% for yc=5.5¢,A, except for Molecular dynamics Reduced barrier
V,==*0.5V. Relative errors of the Kramer's estimates are
poor, as expected. The magnitudes of applied voltages most™
commonly encountered in electrophysiology are 0.2 V or 4> 35462569  3.5462569 019631487  0.19631487

. . 49 35791382 3.5791382  0.20418023  0.204 18023
less. In these cases, the LSA and EED estimates of mean firs 3 36122039 36122039 021206605  0.212 06605

passage times across a central barrier, computedyfor 57 36252828 3.6252829 021742443  0.217 424 44
=6.50r 5.8, A, are good approximations to the exact mean 6.1 3.6277704  3.6277704  0.22033897  0.220338 98
first passage time for the potential shown in FigB)1 When 6.5 36290719  3.6290719  0.22264693  0.222646 95
the barrier height is reduced bk4T, these estimates remain 69 ~ 3.6304296 36304296  0.22499163  0.22499164

; ; e 7.3 3.6323801 3.6323801 0.227 678 20 0.227678 21
good approximations when computed usig= 6.5, A 7.7 3.6351349 3.6351349 0.230 745 02 0.230 74503

and arz fair approximations when computed usipg 81 36385117 3.6385117 023405979  0.234 059 80
= SEEO .

LSA Interior LSA Interior
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