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Mean first passage times across a potential barrier in the lumped
state approximation
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~Received 30 June 2000; accepted 12 October 2000!

The lumped state approximation~LSA! is a method for handling boundary conditions for diffusion
on an interval which simplifies the description of transitions into and out of the interval. It was
originally motivated by the problem of proton conduction through the ion channel gramicidin. This
paper discusses the mean first passage time of a diffuser crossing a potential barrier in the lumped
state approximation. The LSA mean first passage time is shown to be identical to a different
quantity, the interior mean first passage time, clarifying the nature of the approximation. We also
discuss a variant of the LSA in which dependence on an applied electrical potential is made explicit;
an optimal value for an effective electrical distance is found. A detailed comparison is made of the
LSA mean first passage time with several other formulations of the mean time to cross a barrier.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1330215#
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I. INTRODUCTION

This paper describes the lumped state approxima
~LSA!, a method for handling boundary conditions for diff
sion on an interval which simplifies the description of tra
sitions into and out of the interval. The first section describ
the problem which motivated the introduction of th
method, namely the mechanism of proton conduct
through the ion channel gramicidin. References 1 and 2
troduced the LSA in order to make this problem analytica
soluble. The next section discusses the derivation of the
ferential equation for the mean first passage time to diff
across an interval with boundary conditions incorporating
LSA. This mean time is then compared with anexacttime to
cross the barrier~the mean time to cross from the potent
minimum on one side to the minimum on the other! and an
interior mean time that is closely related to the exact tim
The LSA mean first passage time is shown to be identica
the interior mean first passage time, making it easy to ch
acterize the difference between the LSA and exact mean
passage times. We also analyze an effective electrical
tance~EED! variant of the LSA in which dependence on a
applied electrical potential is made explicit. This was used
the analysis of proton conduction. Below, we find a formu
for the optimal effective electrical distance. In the numeri
computations section, these different ways of computing
mean first passage time to cross a barrier are compared
each other and Kramers’s escape rate theory.3

A. The proton conduction model

Gramicidin A is a linear pentadecapeptide consisting
alternating L and D amino acids. The ion conducting conf
mation in membranes has been established by nuclear m
netic resonance.4–6 An N-terminal to N-terminal dimer is
formed by two single-stranded right-handedb-helices whose
760021-9606/2001/114(1)/76/8/$18.00
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axes are oriented perpendicular to the plane of the m
brane. The pore of the dimer has the dimensions of appr
mately ten water molecules in single file.

Pomès and Roux have carried out molecular dynam
simulations of gramicidin with7,8 and without8 a single ex-
cess proton. From these simulations, potentials of mean f
are calculated as a function of the reaction coordina
which are proportional to the axial components of the dip
moments of the pore contents. References 1 and 2 ob
diffusion coefficients for these reaction coordinates fro
their velocity autocorrelation functions. They then constru
a frameworkmodel, designed to incorporate the informatio
from molecular dynamics and use it to calculate cond
tances which are compared with experiment.

Figure 1~A! sketches a simplified configuration space f
proton conduction through gramicidin, as described by
framework model. The top or proton segment represents
domain of a reaction coordinate which follows the progre
of the center of excess charge through the pore from side
side II. The bottom or reorientation segment represents
domain of a reaction coordinate which follows the reorien
tion of water molecules in anemptypore, that is, one withou
an excess proton. In the empty pore, waters tend to be c
to one of the two idealized configurations with the ax
components of the dipole moments aligned. A useful sim
fication is to imagine that there is a defect in the packing
pore waters about which the axial components of the wa
dipole moments turn. Reorientation of the pore waters
then be visualized as due to the diffusion of the defect fr
one end of the column to the other.

Consider a trajectory around the cycle in Fig. 1~A!. For
example, suppose an excess proton enters the pore on s
and exits on side II. Immediately after the proton leaves
pore, the water column may be left in a range of orientatio
These can be visualized by supposing the defect could
located anywhere in a boundary region near one end of
© 2001 American Institute of Physics
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channel: near side I for the defect sketched in the figure
pore waters then rotate to reverse the dipole moment of
pore contents, the electrostatic interaction will again fav
proton entry on side I. The defect must cross the pore inter
to reverse the dipole moments. When it is located in
boundary region on the other side of the channel, anot
proton can enter on side I. Possible transitions between
proton and reorientation segments are suggested by the
pairs of dashed lines. The reorientation segment is thus
vided into three regions: boundary regions I and II whe
transitions to and from the proton segment can be made,
the interior of the reorientation segment, between the bou
ary regions.

The abscissa of Fig. 1~B! is the orientation moment of
the pore contentsx, the reaction coordinate of the molecula
dynamics simulations. This quantity is defined by the form

FIG. 1. ~A! A sketch of a simplified configuration space for proton condu
tion through gramicidin. Cartoons sketch the configuration of pore wat
near the ends of the proton and reorientation segments. The cartoon a
lower left hand corner also shows side I and side II of the channel.~B!
Reorientation potentials of mean forceF ~dots! and the applied potential
energy C ~line!. For the example shown,xC55.7 e0 Å and xA

58.1 e0 Å. The reaction coordinate of the simulations,x, is rescaled to the
axial component of the dipole moment of the pore content,m, by m5ax,
wherea'0.435.~C! State diagram of proton conduction mechanism wi
the boundary regions lumped into discrete points.~D! The random walk
model used to construct the lumped state approximation.
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charges of the water molecules used in the simulations.1 x is
rescaled to givem, the axial component of the dipole mo
ment of the pore contents. The scaling is given bym5ax,
where a'0.435 assumes that pore water dipole mome
have magnitude 0.5e0 Å, within the range of estimates
given by Duca and Jordan.9 The axial component of the por
dipole moment is negative in the lower right hand cartoon
Fig. 1~A! and positive in the lower left hand cartoon. Corr
spondingly, the abscissa of Fig. 1~B! advances from right to
left.

The units of the ordinate of Fig. 1~B! are energy, given
in kBT, whereT5298 K. The figure shows theintrinsic po-
tential of mean force for water reorientation,1,8 F, and the
potential energy due to an applied transmembrane poten
C, as a function ofx. The word intrinsic refers to all com
ponents of the potential apart from the transmembrane
tential. In principle, this includes both short range intera
tions between the water column and the channel as we
longer range interactions between the column and cha
environment. However, the simulations only included t
channel, the pore waters, and a few waters clustered a
each channel entrance. The simulations give estimates oF
at x528.1,27.9,27.7,...,7.9,8.1e0 Å. Linear interpolation
between these points completes the definition. The maxim
extent of the reorientation segment is defined bym56mA ,
and the maximum extent of the interior region is defined
m56mC . The corresponding valuesxA andxC are shown
in Fig. 1~B!. The interior region corresponds to the bro
central barrier ofF and the boundary regions to the potent
minima on either side. An applied potential is assumed
give rise to a constant field in the pore; this is a good
proximation due to the cylindrical geometry of th
channel.10,11 Consequently,C is linear. The slope shown in
Fig. 1~B! corresponds to a positive applied potential
VI5167 mV on side I, withVII50 by convention. We con-
siderF andC to be functions ofm. The total potential en-
ergy isW(m)5F(m)1C(m).

Intuitively, it seems reasonable that diffusion through t
narrow pore of gramicidin has a quasi-one-dimensional ch
acter. However, an attempt to construct a permeation the
of single proton conduction through gramicidin by scali
transitions directly between the endpoints of the proton a
reorientation segments of Fig. 1~A! does not produce a sa
isfactory result.12 Instead, it is necessary to assume that tr
sitions are possible to and from intervals on the reorienta
segment—the boundary regions. With two continuous set
transitions between the proton and reorientation segme
the dynamics of the single proton model would no longer
strictly one-dimensional. The LSA assumes that these
gions of higher-dimensional dynamics are localized near
channel entrances. Transitions are then simplified by lum
ing the boundary region between2mA and 2mC into a
single point, the boundary statebII , and the boundary region
betweenmC andmA into the boundary statebI . Figure 1~C!
shows the state diagram of the resulting proton conduc
model. Instead of a continuum of possible transitions
tween the two segments, there is only a single transition
each end. This allows the proton conduction model to
solved analytically.

-
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II. LSA MEAN FIRST PASSAGE TIMES

Figure 1~D! represents the random walk model used
construct the lumped state approximation of the mean
passage time. This will ultimately result in a diffusion pr
cess describing Brownian motion of the reorientation re
tion coordinate. Note that the indices in Fig. 1~D! progress
from right to left, corresponding to the orientation of th
abscissa of Fig. 1~B!. The boundary states bI andbII repre-
sent the boundary regions discretized by the LSA. Statessi ,
1< i<n, are the domain of the random walk betweenbI and
bII . Each state corresponds to a subinterval of the inte
region of the reorientation segment of widthDL5L/n,
whereL52mC is the width of the interior region. We denot
by m i the dipole moment associated with statesi . Time is
also discrete, with constant time stepDt. At each time step
and for 1< i<n, g i is the forward transition probability from
statesi to statesi 11 , andd i is the backward transition prob
ability from statesi to statesi 21 . Let R represent either I or
II. Then hR is the transition probability of entering the inte
rior region of the reorientation segment from boundary st
bR , andvR is the transition probability of leaving the interio
region to enter statebR .

A. Differential equation

A differential equation will be developed for the mea
time before a diffuser, starting at reaction coordinatem
P@2mC ,mC#, first reaches statebI at m5mC . Consider the
system initially at sitesi where 2< i<n21, t5t0 . If Qj (t)
is the probability that sitesj is occupied at timet, then
Qj (t0)5d i j . The probability that the diffuser stays at sitei
after a time step isQi(t01Dt)512g i2d i . The probability
that the diffuser moves forward isQi 11(t01Dt)5g i and
backward isQi 21(t01Dt)5d i . Let t̄ i be the mean time
before a diffuser, starting at sitesi , escapes tobI . After one
time step, express the mean first passage time before ab
tion as a weighted average:

t̄ i2Dt5Qi~ t01Dt ! t̄ i1Qi 11~ t01Dt ! t̄ i 11

1Qi 21~ t01Dt ! t̄ i 21 . ~1!

Substituting in the expressions for theQi in terms of transi-
tion probabilities yields

2Dt52~g i1d i ! t̄ i1g i t̄ i 111d i t̄ i 21 . ~2!

Transition probabilities are defined to satisfy the Boltzma
distribution

P~m!5Ke2bW~m! ~3!

at equilibrium, whereP(m) is the probability density on the
reorientation segment andK is a constant. Let

g i5DtD~DL!22 exp$~b/2!@W~m i !2W~m i 11!#%, ~4!

d i5DtD~DL!22 exp$~b/2!@W~m i !2W~m i 21!#%, ~5!

whereb5(kBT)21. D is the diffusion coefficient associate
with the coordinatem, with units of ~dipole moment!2/time.
DL5L/n is the distance between states. The time stepDt is
scaled withn so thatg i andd i remain positive and finite a
n→`: Dt5Dt/n2, whereDt is independent ofn.
Downloaded 18 Jan 2001  to 134.121.45.60.  Redistribution subject to
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The transition probabilities may be expanded in t
small parametern21 to give a useful expression for largen.
The expansion gives

g i5DtD~DL!22

3@12bDLW8~m i !/21~DL!2e i1O~n23!#, ~6!

d i5DtD~DL!22

3@11bDLW8~m i !/21~DL!2e i1O~n23!#, ~7!

where

e i52bW9~m i !/41b2W8~m i !
2/8. ~8!

Substitute Eqs.~6! and ~7! into Eq. ~2!, organize terms, and
divide by DtD to obtain

2
1

D 5
22 t̄ i1 t̄ i 111 t̄ i 21

~DL2!
1

bW8~m i !~ t̄ i 212 t̄ i 11!

2DL
1e i~22 t̄ i1 t̄ i 111 t̄ i 21!1O~n21!. ~9!

Putting t̄ i5 t̄ (m i), we recognize the first two terms on th
right hand side as first and second differences, respectiv
The limit n→` then yields a differential equation fort̄ (m):

215D@ t̄ 9~m!2bW8~m! t̄ 8~m!#. ~10!

This equation describes the evolution of the mean first p
sage time in the interior region of the reorientation segme

B. Entrance and exit transition probabilities

We next find expressions for the entrance and exit tr
sition probabilitieshR and nR . Under the condition of de-
tailed balance we have

QI
b/Qn5n I /h I , ~11!

QII
b/Q15n II /h II , ~12!

where QI
b and QII

b are the probabilities of the boundar
states. At equilibrium, these are given by

QI
b5E

mC

mA
P~m8!dm8, ~13!

QII
b5E

2mA

2mC
P~m8!dm8, ~14!

where P(m) is given by Eq. ~3!. Note that Qi5PiDL
1O(n22), where Pi5P(m i). Substitute Eq.~13! into Eq.
~11! and Eq.~14! into Eq. ~12!, use the Boltzmann distribu
tion Eq. ~3!, and take the limit asn→` to obtain

lim
n→`

n I

nh I
5aI , ~15!

lim
n→`

n II

nh II
5aII , ~16!

where the boundary weightsaI and aII are proportional to
integrals over the Boltzmann distribution:
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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aI5L21E
mC

mA
e2bDW~m8! dm8, ~17!

aII5L21E
2mA

2mC
e2bDW~m8! dm8. ~18!

We have introducedDW(m)5W(m)2W(m0) where m0

5mC on side I andm052mC on side II. The following
definitions satisfy the constraints given by Eqs.~15! and
~16!:

n I5Dt~D/DL2!aI , ~19!

n II5Dt~D/DL2!aII , ~20!

h I5h II5Dt~D/DL2!n21. ~21!

The transition probabilitiesn I and n II scale withn in the
same way asg i and d i . This is consistent with modeling
transport from the interior to the boundary states as diffus
The scaling ofh I and h II with n is then determined by the
requirement that detailed balance be satisfied at equilibri
In particular, the boundary states retain positive probabi
in the limit n→`.

C. Boundary conditions

Boundary conditions fort̄ are developed atm52mC ,
on side II, the right side of the reorientation potential profi
in Fig. 1~B!, and atm5mC , on side I, the left side of the
reorientation potential profile in Fig. 1~B!. Assume the dif-
fuser starts at sitei 51 at t5t0 . Thus Q1(t0)51, Qj (t0)
50, for j Þ1. The probability of forward movement isg1

and the probability of backward movement isn II . After one
time stepQ1(t01Dt)512g12n II , Q2(t01Dt)5g1 , and
QII

b(t01Dt)5n II . The mean time before reaching side I
initially t̄ 1 and after one time step it ist̄ 12Dt. Expressing
this as a weighted average

t̄ 12Dt5Q1~ t01Dt ! t̄ 11Q2~ t01Dt ! t̄ 21QII
b~ t01Dt ! t̄ II

~22!

and substituting for theQ’s yields

2Dt5~2g12n II ! t̄ 11g1 t̄ 21n II t̄ II , ~23!

where t̄ II is the mean time required for a diffuser starting
side II to escape to side I.

Next obtain an expression fort̄ II by considering a mean
first passage time problem which begins at statebII . Let
QII

b(t0)51. After one time step,QII
b(t01Dt)512h II and

Q1(t01Dt)5h II . Hence the weighted average is

t̄ II2Dt5QII
b~ t01Dt ! t̄ II1Q1~ t01Dt ! t̄ 1 . ~24!

The appropriate substitutions yieldt̄ II5 t̄ 11Dt/h II . Using
this value for t̄ II , Eq. ~23! becomes

2Dt5g1~ t̄ 22 t̄ 1!1~n IIDt !/h II . ~25!

Substituting from Eqs.~6!, ~20!, and ~21! for the transition
probabilities yields
Downloaded 18 Jan 2001  to 134.121.45.60.  Redistribution subject to
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2DL/D5~ t̄ 22 t̄ 1!/DL1LaII /D1bW8~m1!~ t̄ 12 t̄ 2!/2

1DLe1~ t̄ 22 t̄ 1!1O~n22!. ~26!

Now let n→`, so thatDL→0. All of the terms except the
first two on the right side of Eq.~26! go to zero in this limit.
Hence

t̄ 8~2mC!52LaII /D. ~27!

Next consider the boundary condition fort̄ on side I
wherei 5n. Let Qn(t0)51, Qj (t0)50, for j Þn. The prob-
ability of forward movement isn I and the probability of
backward movement isdn . So Qn(t01Dt)512n I2dn ,
Qn21(t01Dt)5dn , andQI

b(t01Dt)5n I . Since t̄ I50,

t̄ n2Dt5Qn~ t01Dt ! t̄ n1Qn21~ t01Dt ! t̄ n21 . ~28!

With the appropriate substitutions we get

2Dt52n I t̄ n1dn~ t̄ n212 t̄ n!. ~29!

Let n→` to find

t̄ ~mC!50. ~30!

Side I is an absorbing boundary.

D. Solution

The LSA mean first passage timet̄ LSA(m) is the solution
of the differential equation~10! with boundary conditions
Eqs.~27! and~30!. Consider first the homogeneous equati
t̄ h(m) corresponding to Eq.~10!. Integrate twice to obtain

t̄ h~m!5k1H~2mC ,m!1k2 , ~31!

where

H~m1 ,m2!5E
m1

m2
ebW~m8! dm8 ~32!

andk1 andk2 are constants of integration.
The particular solutiont̄ p(m) is constructed from two

independent solutions of the homogeneous equation. We
y1(m)51 and y2(m)5H(2mC ,m). The Wronskian isW
5exp@bW(m)#. Using the variation of parameters formu
yields

t̄ p~m!5
1

D E
2mC

m

e2bW~m8!

3@H~2mC ,m8!2H~2mC ,m!#dm8. ~33!

The general solution is thent̄ (m)5 t̄ h(m)1 t̄ p(m). Applying
the boundary conditions Eqs.~27! and ~30! and simplifying
finally gives an expression for the mean first passage t
using the LSA:

D t̄ LSA~m!5H~2mC ,mC!G~2mC ,mC!

2H~2mC ,m!G~2mC ,m!2I ~2mC ,mC!

1I ~2mC ,m!1G~2mA ,2mC!

3@H~2mC ,mC!2H~2mC ,m!#, ~34!

where we define the integrals
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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G~m1 ,m2!5E
m1

m2
e2bW~m8! dm8, ~35!

I ~m1 ,m2!5E
m1

m2
e2bW~m8!H~m1 ,m8!dm8. ~36!

Consider a diffuser initially at boundary statebII . The mean
first passage time to reach statebI is t̄ LSA(2mC).

III. EXACT AND INTERIOR MEAN FIRST PASSAGE
TIMES

A good characterization of the time required to cros
potential barrier by a single number is the mean first pass
time for a process, beginning at a potential minimum on o
side of the barrier, to reach the minimum on the other s
Therefore, we will refer to the mean first passage time fo
diffuser, starting atmP@2mA ,mmin#, to reachm5mmin as
theexactmean first passage time, and denote it byt̄ Ex . Here,
mmin5axmin , with xmin56.5e0 Å and 2xmin the coordinates
th
si

q

om

p
t

b
or
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of the potential minima in Fig. 1~B!. t̄ Ex is the solution of
Eqs. ~10! and ~30! with t̄ (mmin)5 t̄8(2mA)50. For mP
@2mA ,mmin#:

D t̄ Ex~m!5H~2mA ,mmin!G~2mA ,mmin!2I ~2mA ,mmin!

2H~2mA ,m!G~2mA ,m!1I ~2mA ,m!. ~37!

The interior solutiont̄ Int(m) is similar to the exact solution
except that one computes the mean first time to reachmC

instead ofmmin . For mP@2mA ,mC#:

D t̄ Int~m!5H~2mA ,mC!G~2mA ,mC!2I ~2mA ,mC!

2H~2mA ,m!G~2mA ,m!1I ~2mA ,m!.

~38!

A. Identity of LSA and interior times

Using the addition property of integrals with respect
their interval of integration, we can rewrite the interior sol
tion as
D t̄ Int~m!5H~2mC ,mC!G~2mC ,mC!1H~2mC ,mC!G~2mA ,2mC!1H~2mA ,2mC!G~2mC ,mC!

1H~2mA ,2mC!G~2mA ,2mC!2H~2mC ,m!G~2mC ,m!2H~2mC ,m!G~2mA ,2mC!

2H~2mA ,2mC!G~2mC ,m!2H~2mA ,2mC!G~2mA ,2mC!2E
m

mC
e2bW~m8!H~2mC ,m8!dm8

2E
m

mC
e2bW~m8!H~2mA ,2mC!dm8. ~39!
ir
a-

ial

gy

e

Equation~39! can be simplified in the following way. The
fourth and eighth terms cancel, the third term cancels
sum of the seventh and tenth terms, and the second and
terms may be combined. This results in the following:

D t̄ Int~m!5H~2mC ,mC!G~2mC ,mC!1H~m,mC!

3G~2mA ,2mC!2H~2mC ,m!G~2mC ,m!

2E
m

mC
e2bW~m8!H~2mC ,m8!dm8. ~40!

Using the addition property again, we see that formulas E
~34! and ~40! are identical. Thust̄ LSA(m)5 t̄ Int(m) for m
P@2mC ,mC#.

In particular, the mean first passage time to diffuse fr
bII to bI in the lumped state approximation,t̄ LSA(2mC), is
the same as the mean first passage time to diffuse fromm
52mC to m5mC in the absence of the lumped state a
proximation, t̄ Int(2mC). Qualitatively, this suggests tha
t̄ LSA(2mC) gives a good approximation tot̄ Ex(2mmin)
when the time to cross the boundary regions can
neglected in comparison with the time to cross the p
interior.
e
xth

s.

-

e
e

IV. LSA WITH EFFECTIVE ELECTRICAL DISTANCE

In the proton conduction model,1,2 the probabilitiesvR

and hR are explicitly dependent on applied potential. The
expressions correspond to making the following approxim
tions to the boundary weightsaI andaII :

ãI5L21E
mC

mA
e2bDF~m!eb f IC I dm , ~41!

ãII5L21E
2mA

2mC
e2bDF~m!e2b f IIC I dm . ~42!

Compare these with Eqs.~17! and ~18!. DF(m)5F(m)
2F(m0) with m05mC on side I andm052mC on side II.
C I5e0VI , whereVI is the applied potential on side I.f R ,
with RP$I,II %, is an average fraction of the applied potent
drop between boundary regionR and m0 . We call f R an
effective electrical distance in analogy with the terminolo
of Eyring rate theory.13 The f R are positive; the signs of the
exponents containing thef R can be understood from th
sense of the electrical potential dropC shown in Fig. 1~B!.
ReplacingaII→ãII in Eq. ~27!, we obtain

t̄ 8~2mC!52LãII /D. ~43!

The boundary condition Eq.~30! on side I remains un-
changed. We refer to the solution of Eq.~10! with these
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.



own in

81J. Chem. Phys., Vol. 114, No. 1, 1 January 2001 Mean first passage times across a potential barrier

Downloaded 18
TABLE I. Comparison of mean first passage times across the molecular dynamics potential barrier sh
Fig. 1~B! using various methods. Times are in nanoseconds.

Voltage V

xC54.5e0 Å xC55.5e0 Å xC56.5e0 Å xmin56.5e0 Å

EED LSA EED LSA EED LSA Exact Kramers’

20.5 53.94 55.64 57.13 58.68 58.51 59.08 59.09 58.91
20.2 9.93 9.98 10.20 10.24 10.25 10.27 10.27 10.19
20.1 5.87 5.88 6.01 6.01 6.02 6.02 6.03 5.97
20.05 4.55 4.55 4.65 4.65 4.66 4.66 4.66 4.61

0 3.55 3.55 3.62 3.62 3.63 3.63 3.63 3.58
0.05 2.78 2.78 2.84 2.84 2.84 2.84 2.84 2.80
0.1 2.19 2.19 2.24 2.24 2.24 2.25 2.24 2.21
0.2 1.38 1.38 1.41 1.42 1.43 1.43 1.42 1.39
0.5 0.390 0.402 0.414 0.423 0.436 0.439 0.425 0.407
s

e

n
is

f
put

y
eld

r-
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.

boundary conditions ast̄ EED, since the boundary condition
contain an effective electrical distance. The solution is

D t̄ EED~m!5H~2mC ,mC!G~2mC ,mC!

2H~2mC ,m!G~2mC ,m!2I ~2mC ,mC!

1I ~2mC ,m!1Q@H~2mC ,mC!

2H~2mC ,m!#, ~44!

where

Q5LãII exp$2bW~2mC!%. ~45!

Now examine the difference between Eqs.~34! and~44!:

t̄ EED~m!2 t̄ LSA~m!5H~m,mC!@Q2G~2mA ,2mC!#.
~46!

We may choosef II to minimize t̄ EED2 t̄ LSA . This difference
is zero if Q5G(2mA ,mC), or if

e2b f IIC I5^e2bDC~m!& II , ~47!

where DC(m)5C(m)2C(2mC) and ^...& II denotes the
expected value

^A~m!& II

5E
2mA

2mC
A~m!e2bF~m! dmY E

2mA

2mC
e2bF~m! dm. ~48!

Equation ~47! may also be obtained by requiring that th
choice of f II gives ãII5aII .
 Jan 2001  to 134.121.45.60.  Redistribution subject to
A difficulty with Eq. ~47! is that f II will, in general,
depend onC I . For the special case of proton conductio
through gramicidin, the applied electrical field in the pore
approximately constant,10,11 andm is the axial component o
the dipole moment of the pore contents. In this case we
C(m)52mE, whereE5VI /L,VI is the applied voltage and
L is the length of the pore. Then

DC~m!5~ umu2mC!C I /~e0L !, ~49!

and for small applied fields, we can expand Eq.~47! in pow-
ers of the small parameterbC I . Hence

12b f IIC I1O~2!5^12bDC~m!1O~2!& II ~50!

or f IIC I5^DC(m)& II . On side I an analogous formula ma
be obtained. Thus in the case of a constant electric fi
within the pore

f I5~^m& I2mC!/~e0L !, ~51!

f II5~ u^m& IIu2mC!/~e0L !. ~52!

^m& I and ^m& II may be considered effective electrical coo
dinates of boundary regions I and II. Their values are optim
for approximatingt̄ LSA by t̄ EED at low applied potential.

V. NUMERICAL RESULTS

In this section we compare the mean first passage ti
computed using the LSA Eq.~34!, the exact solution Eq
~37!, the interior solution Eq.~38!, the effective electrical
distance solution Eq.~44!, and Kramers’ escape theory3
eight

0
2

TABLE II. Mean first passage times across a uniformly rescaled potential barrier, with maximum h
reduced from the molecular dynamics value by 4kBT. Times are in nanoseconds.

Voltage V

xC54.5e0 Å xC55.5e0 Å xC56.5e0 Å xmin56.5e0 Å

EED LSA EED LSA EED LSA Exact Kramers’

20.5 2.705 2.840 3.382 3.484 3.805 3.841 3.841 3.666
20.2 0.506 0.509 0.568 0.570 0.596 0.597 0.597 0.534
20.1 0.309 0.310 0.341 0.342 0.355 0.355 0.355 0.307
20.05 0.245 0.245 0.269 0.269 0.279 0.279 0.279 0.237

0 0.196 0.196 0.215 0.215 0.223 0.223 0.223 0.185
0.05 0.159 0.159 0.174 0.174 0.180 0.180 0.180 0.146
0.1 0.130 0.130 0.142 0.142 0.147 0.147 0.147 0.117
0.2 0.0890 0.0896 0.0986 0.0989 0.103 0.103 0.103 0.078
0.5 0.0359 0.0370 0.0419 0.0425 0.0452 0.0454 0.0450 0.030
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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Kramers’ theory assumes that the diffuser attains a qu
equilibrium state in a deep potential well before making
transit over a high barrier. The corresponding mean first p
sage time is

k215D21E
m1

m2
ebW~m! dmE

m3

m4
e2bW~m! dm, ~53!

where k is the crossing rate, the barrier is in the interv
(m1 ,m2) and the potential well is in the interval (m3 ,m4).
When the top of the barrier and the bottom of the well can
approximated by quadratic extrema, the classical rate the
expression is obtained. However, the expression in Eq.~53!
may be evaluated for more general barrier and well sha
For definiteness, we evaluate Eq.~53! with m152mmin ,
m25mmin , m350 andm452mA . Here,mmin5axmin , with
xmin56.5e0 Å, is the value corresponding to the potent
minimum in Fig. 1~B! andm350 is the value correspondin
to the center of the barrier.

The LSA does not compete with Kramers’ theory as
method for computing first passage times. The latter is u
because of the simplicity of Eq.~53!, and especially the sim
plicity and physical clarity of the formula obtained for th
case of quadratic extrema. In contrast, the formula for
LSA, Eq. ~34!, is as complicated as the formula for the exa
mean first passage time, Eq.~37!. However, the comparison
between Kramers’ theory and the LSA below will emphas
the accuracy of the latter approach.

We first consider the mean first passage times to c
the molecular dynamics potential of mean force, shown
Fig. 1~B!. We compare mean first passage times compu
using the LSA and EED, for three different values ofmC

5axC , with both the exact mean first passage time and
obtained from Kramers’ escape rate. We use the dipole
fusion coefficientD5a231.08(e0 Å) 2 ps21, obtained from
the velocity autocorrelation function of the reactio
coordinate.1 See Table I for the calculated values using ea
method. Relative errors of the LSA and EED mean first p
sage times, calculated with respect to the exact mean
passage time, are less than 1%, except for the cases oxC

54.5e0 Å or VI560.5 V. Relative errors of the Kramers
mean first passage time are less than 2%, except for the
VI50.5 V. We next make the same comparisons with
potential uniformly scaled so that barrier heights are redu
by 4kBT; see Table II. Relative errors are generally larg
for the reduced barrier heights. However, for the LSA a
EED cases, these are still within 1% of the exact solution
xC56.5e0 Å and within 5% for xC55.5e0 Å, except for
VI560.5 V. Relative errors of the Kramer’s estimates a
poor, as expected. The magnitudes of applied voltages m
commonly encountered in electrophysiology are 0.2 V
less. In these cases, the LSA and EED estimates of mean
passage times across a central barrier, computed forxC

56.5 or 5.5e0 Å, are good approximations to the exact me
first passage time for the potential shown in Fig. 1~B!. When
the barrier height is reduced by 4kBT, these estimates remai
good approximations when computed usingxC56.5e0 Å
and are fair approximations when computed usingxC

55.5e0 Å.
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We finally compare the interior solution Eq.~38! with
the LSA at zero applied voltage and varyingxC between
4.5e0 Å and 8.1e0 Å. Comparisons for the molecular dynam
ics and rescaled barriers are shown in Table III. The num
cal results agree to seven or eight decimal digits, reflec
our proof that these two quantities are the same within th
common domain. For the molecular dynamics barrier, fi
passage times decrease by less than 1% asxC decreases from
8.1 to 5.3e0 Å. For the reduced barrier, first passage tim
decrease by about 10% asxC decreases in the same range

VI. CONCLUSION

This paper obtains formulas for the mean first pass
time to diffuse between the boundary states, using either
LSA or the EED variant. The latter assigns the bound
states an effective electrical coordinate, giving an expl
dependence of the single proton conduction model on
plied electrical potential. The LSA mean first passage time
shown to be identical to an interior first passage time in th
common domains. This result shows that the LSA is accu
when the time required to cross a boundary region can
neglected in comparison with the time required to cross
pore interior. Further, an optimal value is found for the ele
trical coordinate in the EED variant of the LSA method. O
numerical results show that the single proton model incor
rating the LSA gives an accurate description of mean fi
passage times to cross the reorientation segment when
is a significant barrier to diffusion and the boundary regio
are not too wide. For most of the cases considered, the L
gives estimates of the mean first passage time that are m
precise than those given by Kramers’ theory. This is es
cially true when the potential barrier is low.

The LSA was introduced in order to model in a simp
way proton entrance into and exit from the ion chann
gramicidin. Although transport of a proton through the po
seems to be well described by a single reaction coordinat
is necessary to take into account a range of pore water s
at one end of the pore when the excess proton is just out
the channel at the other end. These potentially high
dimensional dynamics are collapsed by the LSA. The res
ing one-dimensional model can be solved analytically.

TABLE III. Comparison of LSA and Interior mean first passage times
the molecular dynamics and rescaled potential barriers. Times are in n
seconds.

xC

Molecular dynamics Reduced barrier

LSA Interior LSA Interior

4.5 3.546 256 9 3.546 256 9 0.196 314 87 0.196 314 8
4.9 3.579 138 2 3.579 138 2 0.204 180 23 0.204 180 2
5.3 3.612 293 9 3.612 293 9 0.212 066 05 0.212 066 0
5.7 3.625 282 8 3.625 282 9 0.217 424 43 0.217 424 4
6.1 3.627 770 4 3.627 770 4 0.220 338 97 0.220 338 9
6.5 3.629 071 9 3.629 071 9 0.222 646 93 0.222 646 9
6.9 3.630 429 6 3.630 429 6 0.224 991 63 0.224 991 6
7.3 3.632 380 1 3.632 380 1 0.227 678 20 0.227 678 2
7.7 3.635 134 9 3.635 134 9 0.230 745 02 0.230 745 0
8.1 3.638 511 7 3.638 511 7 0.234 059 79 0.234 059 8
 AIP copyright, see http://ojps.aip.org/jcpo/jcpcpyrts.html.
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The combination of molecular dynamics and configu
tion space methods used to analyze proton conduc
through gramicidin may become applicable to other syste
as information on the structure of intermediate states
comes available. Examples for which some structural inf
mation are currently available include proton transfer in
photosynthetic reaction center,14 a potassium channel,15 and
proton transport in bacteriorhodopsin.16,17 It does not seem
necessary that the conduction pathway be geometrically
ear like gramicidin. What is required is that the dynamics c
be described by a series of steps that can be paramete
using a single reaction coordinate, leading to a quasi-o
dimensional configuration space such as that shown in
1~A!. It may then be the case that when protons~for ex-
ample! enter the system at one end of the pathway, it
necessary to take into account that elements of the path
at the opposite end can be in several different states. If
characteristic time required for diffusion~in configuration
space! between these several states is short compared to
time required for proton transport, it may be possible to lu
these states together using the LSA and thus preserve
essentially one dimensional character of the dynamics.
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