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Abstract A modern approach to studying the detailed dynamics of biomolecules
is to simulate them on computers. Framework models have been developed to in-
corporate information from these simulations in order to calculate properties of
the biomolecules on much longer time scales than can be achieved by the simula-
tions. They also provide a simple way to think about the simulated dynamics. This
article develops a method for the solution of framework models, which generalizes
the King–Altman method of enzyme kinetics. The generalized method is used to
construct solutions of two framework models which have been introduced previ-
ously, the single-particle and Grotthuss (proton conduction) models. The solution
of the Grotthuss model is greatly simplified in comparison with direct integration.
In addition, a new framework model is introduced, generalizing the shaking stack
model of ion conduction through the potassium channel.

Keywords Single-particle diffusion · Grotthuss conduction · Vacancy diffusion

1. Introduction

A modern approach to understanding the detailed dynamics of biomolecules is to
simulate them on a computer (Roux, 2002; Roux et al., 2004). Molecular dynam-
ics simulations integrate the laws of motion for a very large number of atoms in
a detailed model of a biomolecule. Despite the rapidly increasing power of mod-
ern computers, there remains a very large gap in scales between the short time
intervals over which direct molecular dynamics simulations can be made and the
much longer time intervals often required to make comparisons with experiment.
Even when such gaps in time scales are overcome by the advancement of com-
puter technology, there will still be an important need to think about the dynamics
in simple ways. One approach to overcoming the gap is to construct framework
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models: Stochastic models designed to incorporate the potentials of mean force
and diffusion coefficients estimated from the simulations (Schumaker et al., 2000;
Bernèche and Roux, 2003). The potentials and diffusion coefficients are calculated
as a function of reaction coordinates chosen as key degrees of freedom participat-
ing in the dynamics. These simplified models can then be used to make detailed
comparisons with experiment (Gowen et al., 2002).

The framework models that we have constructed so far are models of ion per-
meation through membrane channels. They are also diffusion models. The diffu-
sion approximation may ultimately be justified by a projection of high-dimensional
Hamiltonian dynamics to a low-dimensional configuration space of slow variables
(Zwanzig, 1961; Mori, 1965; Berne and Pecora, 1976; Zwanzig, 2001). The pro-
jection generally yields a generalized Langevin equation, an integro-differential
equation. The influence of the other (fast) variables appears both as an additive
“random force” and as a friction kernel in this equation. When there is a large gap
in time scales between the slow and fast variables, the random force is often ap-
proximated by a Gaussian white noise and the friction kernel by a delta function.
This yields a classical Langevin equation. Further, when the inertial term can be ig-
nored, one obtains the diffusion approximation (Roux et al., 2004). In practice, the
diffusion approximation is often assumed. This is true of the classical theory of ion
permeation formulated by Goldman, Hodgkin, and Katz (Hille, 1992), Poisson–
Nernst–Planck theory (for example, Chen et al., 1997) and Brownian Dynamics
simulations of ion channels (for example, Allen and Chung, 2001; Mashl et al.,
2001). However, the generalized Langevin equation is used by Grote–Hynes the-
ory to calculate the rate of crossing over a parabolic potential barrier (Grote and
Hynes, 1980). This has been applied to a model of the IRK1 potassium chan-
nel (Tolokh et al., 2002). The Brownian Dynamics technique can also be gener-
alized to simulations of the sample paths of the generalized Langevin equation
(Tuckerman and Berne, 1991).

The diffusing entity described by a framework model is the state of the system.
For a model of ion permeation through a membrane channel, the state may cor-
respond to a configuration of one or several ions within the channel pore. These
models naturally incorporate experimental information about possible states of oc-
cupancy within the channel pore. An example of such evidence comes from X-ray
crystallography—the selectivity filter (narrow part of the pore) of the KcsA potas-
sium channel is usually occupied by two potassium ions (Morais-Cabral et al., 2001;
Zhou and MacKinnon, 2004).

The Smoluchowski equation describes diffusion under the influence of a system-
atic force and diffusion coefficient. The framework models that are constructed
below, solve the Smoluchowski equation directly under various conditions. Frame-
work models can also be constructed by integrating the sample paths underly-
ing the Smoluchowski equation using Brownian Dynamics. Bernèche and Roux
(2003) give an excellent example, with both potential of mean force and diffu-
sion coefficients obtained from molecular dynamics simulations. These quanti-
ties are estimated at the nodes of a rectangular grid and determine transition
probabilities which depend on the potential of mean force and diffusion coef-
ficients using a generalization of the Agmon–Hopfield expressions (Agmon and
Hopfield, 1983). Schumaker and Watkins (2004) show that similar random walks
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converge to the Smoluchowski equation as the distance between grid points goes
to zero.

This article describes a systematic method of solving framework models whose
configuration spaces involve only a single cycle of states. The cycle may include
isolated states or continuous segments of states parameterized by single reac-
tion coordinates. The method of solution is a generalization of the King–Altman
method, which is popular within the enzyme kinetics community. The King–
Altman method is based on solving a linear system of equations by Cramer’s rule
(King and Altman, 1956); however, traditional mathematical expressions are re-
placed by diagram expansions.

First, two framework models will be described in detail: The single-particle
model and the Grotthuss model. Next, the original King–Altman method and
its relationship with Cramer’s rule are illustrated by a simple example. The
generalized King–Altman method is then developed. Its use is demonstrated
by calculating conductances and state probabilities for the single-particle and
Grotthuss models. Finally, the generalized King–Altman method is used to con-
struct a new framework model for ion conduction through the KcsA potassium
channel.

2. Single-particle model

The gramicidin monomer is a peptide (a small protein) composed of 15 amino
acids in a helical conformation (Arseniev et al., 1985; Ketcham et al., 1997). In
biological membranes, the conducting form is a head-to-head dimer. The dimer
has a cylindrical pore that is about 25 Å long and 4 Å in diameter. The pore is
occupied by eight to ten water molecules in single file. Gramicidin allows small
ions with a single positive charge to pass through the membrane; one of these
permeant ions is sodium (Na+). Three lines of argument, each based on conduc-
tion measurements and theoretical interpretation, suggest that only one Na+ at a
time can occupy the pore (Finkelstein and Andersen, 1981; Tripathi and Hladky,
1998). To our knowledge, boundary conditions that enforce the single-particle
constraint were first proposed by Levitt (1986). McGill and Schumaker (1996)
gave a systematic derivation of these by taking the diffusion limit of a random
walk.

Figure 1(a) schematically portrays a gramicidin channel in a biological mem-
brane occupied by a single ion. Waters are represented in the figure by angles with
the electronegative oxygen at the vertex. One hydrogen participates in a bond with
a backbone carbonyl and, in addition, water oxygens participate in hydrogen bonds
with oxygens in front of and behind them. The waters coordinate with a helical
backbone; the figure does not attempt to represent this geometry. A monovalent
cation is represented by the circle with a plus sign. Simulations suggest that waters
close to the cation are oriented with their electronegative oxygen close to the cen-
ter of positive charge. Figure 1(b) shows the potential profile for Na+ in gramicidin
based on that calculated by Roux and Karplus (1993); z is the axial component of
the ion’s displacement from the pore center. The shape of the potential was cal-
culated by molecular dynamics simulations but its amplitude was divided by 3 to
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Fig. 1 (a) Schematic cross-section of a gramicidin channel in a biological membrane. (b) Scaled
potential of mean force for Na+ in gramicidin, based on the calculations of Roux and Karplus
(1993).

give a better comparison with conductance data (McGill and Schumaker, 1996). In
addition to the potential of mean force, effective diffusion coefficients as a func-
tion of the reaction coordinate can also be calculated from simulations (Chiu et al.,
1993; Crouzy et al., 1994).

A state diagram for single-particle conduction is shown in Fig. 2(a). The hor-
izontal line represents the states of the occupied pore, and is parameterized by
the reaction coordinate ξ , which is a dimensionless variable corresponding to z in
Fig. 1. The endpoint ξ = 0 corresponds to the ion at the channel entrance on side
I, and the endpoint ξ = 1 corresponds to an ion at the channel entrance on side II.
When the ion leaves the pore, the system makes a transition to the empty state E
at the bottom of Fig. 2(a). Ion entrances correspond to transitions from E to the
channel entrance at either end of the pore.

This state diagram may be constructed as the diffusion limit of the random walk
depicted in Fig. 2(b). States S1, S2, . . . , Sn correspond to an ion in the pore, where
in state Si an ion is located at spatial coordinate ξi = i/n, 1 ≤ i ≤ n. The letter

Fig. 2 (a) State diagram for the single-particle model. (b) State diagram of the random walk used
to construct the single-particle model.



Bulletin of Mathematical Biology (2006)

E corresponds to an empty pore, that is, a pore occupied only by water. By the
construction of the random walk, the pore is either empty or occupied by a single
walker. It is manifest that, when we take the diffusion limit n → ∞, the resulting
process will describe a pore that is either empty or occupied by a single diffuser.

Symbols for the transition rates between the states of the random walk in
Fig. 2(b) are given above and below the arrows. These rates are defined by:

γi = t−1
D n2di,i+1 e[w(ξi )−w(ξi+1)]/2, (1)

δi = t−1
D n2di,i−1 e[w(ξi )−w(ξi−1)]/2, (2)

αIcI = t−1
D κ−1

I v0 eψI−w(0)cI, (3)

βI = t−1
D κ−1

I n, (4)

αIIcII = t−1
D κ−1

II v0 e−w(1)cII, (5)

βII = t−1
D κ−1

II n. (6)

The rate of ion entry into the channel from the bulk solution on side R is αRcR,
where R ∈ {I, II}. The rate of ion exit from the channel into the bulk solution is
βR. In the occupied state, γi , 1 ≤ i ≤ n − 1, is the rate of moving in the direction of
higher indices from site i and δi , 2 ≤ i ≤ n, is the rate of moving in the direction of
lower indices from site i .

Transition rates between the occupied states, Eqs. (1) and (2), have the form
introduced by Agmon and Hopfield (1983). The transition rates used by Apay-
din et al. (2003) in their random walk model of protein folding also depend
exponentially on energy differences. We use the generalization of the Agmon–
Hopfield form introduced by Bernèche and Roux (2003), which yields a Smolu-
chowski equation with state-dependent diffusion coefficients when the diffusion
limit is taken. The symbol di, j represents the mean diffusivity (di + dj )/2 where
di = Di/D0. Di is the diffusion coefficient associated with site i and di is the cor-
responding dimensionless value. A diffusion scale D0 is introduced. tD is the diffu-
sion time scale; for a channel of length L and diffusion coefficient D0, tD = L2/D0.
tD has units of time and the other quantities represented on the right-hand side
of Eqs. (1)–(6) are dimensionless. w(ξ) = W/(kBT) is a dimensionless potential
of mean force, where W is the potential with units of energy, kB is Boltzmann’s
constant, and T is the absolute temperature.

The particle entrance rates, αRcR, are independent of n. This means that the dis-
tribution of entrances into the channel is exponential, and does not change in the
diffusion limit n → ∞. The exponential distribution is a reasonable first approxi-
mation for the distribution of empty state dwell times. Physically, the exponential
distribution refers to entrances associated with distinct particles. It does not cap-
ture the highly correlated motions of a single particle, which may cross an arbitrary
threshold several times in the process of entering a pore. The exponential distribu-
tion of distinct arrivals by noninteracting diffusers has been rigorously established
(Nadler et al., 2001). The constants κR, R ∈ {I, II}, are proportional to access re-
sistance on side R, and may be regarded as controlling the mean time before ion
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entrance into the channel from side R. ψI = �I/(kBT) is the dimensionless applied
potential on side I, modeling an electrical potential difference between the two
sides of the membrane (the applied potential on side II is zero by convention).
cR = CR/C• is the dimensionless ion concentration on side R. CR is the ion con-
centration in standard units and C• is the standard unit concentration, e.g., 1 M. v0

is a dimensionless pore volume.
The exit rates, βI and βII, are proportional to n. This can be understood from

the requirement that the particle flux from the empty state into an entrance must
equal the flux from the same entrance back into the empty state at thermodynamic
equilibrium (the condition of detailed balance). The probability of the empty state,
QE, remains finite and positive as n → ∞, and thus QEαRcR does too. In the diffu-
sion limit, the probabilities of the states representing the occupied channel scale as
n−1 (so that the total probability of the occupied state remains positive and finite).
Thus, the exit rates must be proportional to n in order that the exit fluxes, Q1βI

and Qnβn, remain finite and positive as n → ∞.
We now take the diffusion limit of the random walk shown in Fig. 2(b), with

transition rates defined by Eqs. (1)–(6), to obtain the single-particle model. Let Qi ,
for 1 ≤ i ≤ n, be the probability that the random walker will be at Si , an occupied
state of the channel in Fig. 2(b). At any steady state, the flow of probability into Si

equals the flow out. Hence, for 2 ≤ i ≤ n − 1, we have

Qi (δi + γi ) = Qi−1γi−1 + Qi+1δi+1. (7)

To obtain the time-independent Smoluchowski equation, put

Qi = pi	ξ, (8)

where pi = p(ξi ) converges to a probability density at ξi as n → ∞. 	ξ =
n−1 is the distance between two adjacent sites. Expand γi and δi in Taylor
series:

γi = t−1
D n2di,i+1[1 − w′

i n
−1/2 + εi n−2 + O(n−3)], (9)

δi = t−1
D n2di,i−1[1 + w′

i n
−1/2 + εi n−2 + O(n−3)], (10)

where wi = w(ξi ), w′
i = w′(ξi ), etc., with

εi = −w′′
i /4 + (w′

i )
2/8. (11)

Substitute Eqs. (8) through (10) into Eq. (7) and let n → ∞ to obtain, after some
algebra

(d(ξ)p′(ξ))′ + (d(ξ)w′(ξ)p(ξ))′ = 0. (12)

Equation (12) may be integrated once to obtain the Nernst–Planck equation:

J = −t−1
D d(ξ)[p′(ξ) + w′(ξ)p(ξ)] (13)
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where the constant of integration, J , is the probability current. Alternately, we
may use the following useful formula:

J = lim
n→∞(Qiγi − Qi+1δi+1). (14)

The Nernst–Planck equation is easily obtained by substituting from Eqs. (8)
through (10) and letting n → ∞.

The first term on the right of the Nernst–Planck equation is the contribution
of Fick’s law, which, by itself, would describe a steady probability current flow-
ing down a concentration gradient. The second term models the influence of the
potential energy w; probability tends to flow downhill in the direction of −w′. A
positive current J corresponds to flow in the direction of increasing values of the
independent variable ξ , which is clockwise around the state diagram of Fig. 2(a).

The point of the random walk construction of the single-particle model is to
obtain boundary conditions for the Smoluchowski equation that enforce the single-
particle constraint. To obtain the boundary condition on side I, balance probability
flowing into and out of site S1 in Fig. 2(b):

Q1(βI + γ1) = QEαIcI + Q2δ2. (15)

Substitute from Eqs. (3), (4), and (8) and let n → ∞, using (14). The analysis on
side II is similar. Obtain

p(0) = QEv0 eψI−w(0)cI − J tDκI, (16)

p(1) = QEv0 e−w(1)cII + J tDκII. (17)

Since the system must be in some state in Fig. 2(a), we normalize

QE +
∫ 1

0
p(ξ) d ξ = 1. (18)

The boundary conditions, Eqs. (16) and (17), are somewhat unusual because,
through the factor QE, they refer to the solution p(ξ) in the interior of its do-
main [0, 1], and not just at the endpoints. They are an example of nonlocal bound-
ary conditions. For κI, κII > 0, we call them exponential boundary conditions
(Schumaker, 2002) because they correspond to exponentially distributed waiting
times in the empty state. Yin (2004) has obtained the existence and uniqueness of
solutions to a class of Smoluchowski equations with nonlocal boundary conditions
similar to the single-particle model.

A modified formulation of the random walk construction does not lead to ex-
ponentially distributed entrances, but instead to the single-particle boundary con-
ditions originally proposed by Levitt (1986). To obtain Levitt’s boundary condi-
tions, retain the definitions of the transition rates between sites Si and Sj , Eqs. (1)
and (2). Transition rates corresponding to ion entrance and exit, Eqs. (3)–(6), are
each multiplied by n (McGill and Schumaker, 1996). Repeating the derivation of
the boundary conditions, obtain Eqs. (16) and (17) with κI = κII = 0. The mean
time in the empty state in Levitt’s model is zero. In the single-particle model that
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Fig. 3 Current as a function of parabolic barrier height H: CI = 1M, CII = 0, and �I = 0. When
H < 0, the potential is a parabolic energy well. Cartoons below the graph indicate the qualitative
nature of trajectories for H < 0 and H > 0.

uses the entrance rates defined by Eqs. (3) and (5), the mean time in the empty
state is positive and the constants κI and κII are proportional to access resistance
(Schumaker, 2002). This is the electrical resistance of the bulk medium outside the
channel to ions diffusing from infinity to the channel entrance. Levitt’s boundary
conditions do not include a model for access resistance.

In the cases of both exponential and Levitt boundary conditions, Eqs. (13) and
(16)–(18) may be integrated directly to obtain expressions for J , QE, and p(ξ)
(McGill and Schumaker, 1996; Schumaker, 2002). Solutions for both cases, and a
third described below, are shown in Fig. 3. To construct this figure, the potential
w(ξ) is assumed to be a parabolic energy barrier of height H. When H < 0, the
potential is instead an energy well.

The solid curve of Fig. 3 shows the single-particle model with Levitt’s original
boundary conditions, corresponding to Eqs. (16) and (17) with κI = κII = 0. These
boundary conditions incorporate no model of access resistance. Physically, the cur-
rent decreases as H > 0 increases because less current passes over an increasingly
high energy barrier. The current decreases as H < 0 decreases because it becomes
increasingly difficult for the occupying particle to escape the energy well. The long-
dashed curve shows the single-particle model with exponential boundary condi-
tions, corresponding to Eqs. (16) and (17) with κI = κII > 0, modeling access resis-
tance (Schumaker, 2002). When H > 0, diffusion over the parabolic energy barrier
is rate limiting and solutions for the exponential and Levitt boundary conditions
nearly coincide. When H < 0, however, the current for exponential boundary con-
ditions is less than that for Levitt boundary conditions. This is because the terms
proportional to κI and κII slow both entrance and exit of trajectories from the in-
terval 0 ≤ ξ ≤ 1.

To develop an understanding of the effect of the nonlocal factor QE, consider
the solution of Eq. (12) with boundary conditions given by Eqs. (16) and (17),
except that QE is replaced by 1 (Schumaker, 2002). This is given by the
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short-dashed curve in Fig. 3. To make this comparable to the solid curve we also
put κI = κII = 0. This short-dashed curve departs from the single-particle theory
for H < 0. Replacing QE → 1 in the boundary conditions gives a mean field the-
ory. Schumaker (2002) constructs the trajectories underlying this theory as a sum
of single-particle processes. Any number of particles can now occupy the pore, as
indicated by the cartoon below the graph in Fig. 3. As the energy well becomes
deeper, it simply fills up with more particles. The current then increases as H be-
comes more negative. Goldman–Hodgkin–Katz theory (Hille, 1992) and Poisson–
Nernst–Planck theory as described by Chen et al. (1997) have similar mean field
boundary conditions.

3. Grotthuss conduction model

Proton transport in aqueous solution is different than the diffusion of other species
since, in order for a net proton to move from one spatial location to another, no
single proton need move through distances much greater than the average sepa-
ration between water molecules. Only the bonds between hydrogens and oxygens
need be rearranged. This is called Grotthuss conduction (Agmon, 1995). In view of
the difference in mechanism, it is not surprising that proton transport may be much
more rapid than transport of other ions. The framework model introduced in this
section is an elaboration of the single-particle model because it describes the reori-
entation of water molecules in the empty state. For ions such as Na+ the reorienta-
tion step is much faster than others required for permeation, so reorientation need
not be included in their framework models. An experimentally accessible model of
proton transport along a single file of water molecules is provided by proton con-
duction through gramicidin (Eisenman et al., 1980). This has been simulated by
molecular dynamics (Pomès and Roux, 1996, 2002) and the Grotthuss model was
constructed to compare the results with conductance measurements (Schumaker
et al., 2000, 2001; Gowen et al., 2002).

Figure 4 depicts a simplified configuration space for single-proton conduction in
gramicidin. The top line segment represents the states of a pore occupied by a sin-
gle excess proton, and is parameterized by ξ H. The proton can move from one end
of the pore to the other, as depicted by the cartoons above. As the charge moves,
hydrogen bonds reform so that water dipoles are in an energetically favorable con-
formation. If the proton leaves the pore on the right, the water column will be left
partially ordered, with the electronegative oxygens oriented towards the center of
excess positive charge on the right. However, waters may be partially disordered,
especially near side I. The bottom line segment represents the states of an empty
pore (without an excess charge), and is parameterized by ξ E. The pair of dashed
lines to the right indicates a range of possible transitions that can be made from the
occupied segment to a subinterval of states on the empty segment called boundary
region II. This range of transitions models a range of possible disordered states of
the water column after ion exit. A similar range of transitions is shown on the left,
associated with boundary region I. Potential of mean force calculations for the oc-
cupied and empty pores are shown in Fig. 4(b) and (c), respectively (Gowen et al.,
2002; Pomès and Roux, 2002).
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Fig. 4 (a) Simplified configuration space for single-proton conduction in gramicidin. (b) Pro-
ton potential of mean force (Pomès and Roux, 2002). (c) Water reorientation potential of mean
force, with amplitude reduced to be consistent with conductance data from gramicidin A and two
analogs (Gowen et al., 2002).

Figure 5(a) shows a state diagram for the framework model of single-proton
conduction. Each filled circle represents a boundary region indicated in Fig. 4(a),
but lumped to give an analytically soluble model. The lumped state approxima-
tion gives accurate mean first passage times across the empty pore segment if
the central barrier is sufficiently high and the boundary regions are not too wide
(Mapes and Schumaker, 2001). Currents computed using the analytical model
(from Eqs. (28)–(33) given later) are in excellent agreement with a numerical cal-
culation that avoids the lumped state approximation (Schumaker, 2003).

The random walk depicted in Fig. 5(b) is used to construct the state diagram for
single-proton conduction. States Hi correspond to a proton in the pore at ξ H = i/n
and states Ei correspond to an empty pore at ξ E = i/n. The following transition
rates generalize the model of Gowen et al. (2002) by including terms that yield
state-dependent diffusion coefficients:

γ s
i = t−1

s n2ds
i,i+1 e[ws (ξi )−ws (ξi+1)]/2, (19)

δs
i = t−1

s n2ds
i,i−1 e[ws (ξi )−ws (ξi−1)]/2, (20)

αIcI = t−1
a a−1 eζ+ fNψI cI, (21)

βI = t−1
a n e− fXψI , (22)
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Fig. 5 (a) State diagram for the single-proton conduction model. Each filled circle on the bottom
segment represents a boundary region of the configuration space shown in Fig. 4a. (b) Random
walk used to construct the state diagram for the single-proton conduction model.

αIIcII = t−1
a a−1 eζ− fNψI cII, (23)

βII = t−1
a n e fXψI , (24)

νI = t−1
E n2a e fBψI , (25)

ηI = ηII = t−1
E n, (26)

νII = t−1
E n2a e− fBψI , (27)

where s = H (proton) or s = E (empty). γ s
i , for 1 ≤ i ≤ n, is the rate of moving

forward (clockwise around the diagram), and δs
i , for 1 ≤ i ≤ n, is the rate of moving

backward (counterclockwise). αRcR and βR, respectively, give the rate of excess
proton entry into the pore and escape from the pore on side R. νR and ηR are rates
of transitions between the empty segment and the lumped states.

The mean diffusivity ds
i, j = (ds

i + ds
j )/2 where ds

i = Ds
i /D0, where Ds

i is the dif-
fusion coefficient associated with site si and D0 is the diffusion scale. ws is the
potential of mean force, ψI is the applied electrical potential on side I, and ts is the
time constant associated with segment s. The access time ta is the time constant
associated with proton entrance and exit. cR is the concentration of excess protons
in the bulk solution on side R ∈ {I, II}. The parameter ζ is a real number, a is a
positive real number, and fB, fN, and fX are positive or zero. Their physical in-
terpretations are given by Schumaker et al. (2001) and Gowen et al. (2002). All
quantities in the definitions for the transition rates are dimensionless except for
the time constants.

As with the single-particle model, ordinary differential equations, boundary con-
ditions, and a normalization condition are obtained by balancing the flow of prob-
ability into and out of appropriate states, similar to Eq. (7), and taking the limit
n → ∞. One obtains (Schumaker et al., 2001; Gowen et al., 2002):

(ds(ξ s)ps′(ξ s))′ + (ds(ξ s)ws′(ξ s)ps(ξ s))′ = 0 for s ∈ {H, E}, (28)

Qb
I = pE(1)a e fBψI , (29)

Qb
II = pE(0)a e− fBψI , (30)
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pH(0) e− fXψI = Qb
I a−1 eζ+ fNψI cI − J ta, (31)

pH(1) e fXψI = Qb
IIa

−1 eζ− fNψI cII + J ta, (32)
∫ 1

0
pE(ξ E) d ξ E +

∫ 1

0
pH(ξ H) d ξ H + Qb

I + Qb
II = 1. (33)

In these equations, ps(ξ s) is a probability density on segment s and Qb
R is the

probability of the lumped state bR. The net current clockwise around the dia-
gram is J . Equations (28) are obtained by balancing probability about the state
i , 2 ≤ i ≤ n − 1, on segment s. Equations (29) and (30) are obtained by balanc-
ing probability about states bI and bII, respectively. Equations (31) and (32) are
obtained by balancing probability about the states H1 and Hn, respectively. Equa-
tion (14), applied to states on segment s, is used to obtain the terms proportional
to J . Equation (33) normalizes probability.

Analytical solutions of the Grotthuss model are important because a thorough
comparison with experimental data involves a very large number of current evalu-
ations. For example, the sensitivity analysis of Gowen et al. (2002) involved over a
million evaluations. Each evaluation involves the solution of the model for differ-
ent parameter values or under a different set of experimental conditions. They can
be performed extremely quickly when they are based on an analytical solution. A
special case of Eqs. (28)–(33) has been solved by direct integration (Schumaker
et al., 2001). The calculations are straightforward, but lengthy. The King–Altman
Method, which we introduce next, will be generalized to provide a much less te-
dious method for finding the solution.

4. The generalized King–Altman method

4.1. The King–Altman method

The King–Altman method (King and Altman, 1956; Hill, 1977) is a diagrammatic
method for finding the steady-state solutions of Markov chains. An important el-
ement of this method is the directed diagram. In the terminology of graph theory,
this is a spanning tree graph with every edge directed towards some fixed vertex.
The product of transition rates corresponding to each edge is represented by the
diagram. An example is shown in Fig. 6(a). All transitions are directed towards
state E, and the diagram represents the product γ1 × · · · × γn−1βII.

To illustrate the steady-state solution of a Markov chain, consider the three-
state diagrams shown in Fig. 6(b). The transition rate from site i to site j is
denoted ki j . Let the probability of state i be denoted Qi . Then, the steady state is
the solution of⎛

⎜⎜⎝
−(k12 + k13) k21 k31

k12 −(k21 + k23) k32

1 1 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Q1

Q2

Q3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0

0

1

⎞
⎟⎟⎠ . (34)

The first two equations balance the flow of probability into and out of states
1 and 2. The equation balancing the flow of probability into and out of state 3
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Fig. 6 (a) A directed diagram of the original King–Altman method; this diagram is an element
of the solution of the steady-state probabilities of the Markov chain depicted in Fig. 2(b). (b) A
three-state Markov chain.

is a linear combination of these and is omitted. The last equation normalizes
probability.

Let A be the matrix and let b be the column vector on the right-hand side
of Eq. (34). Then, according to Cramer’s rule, Qi = det(Bi )/ det(A), where
Bi is the matrix obtained by replacing the ith column of A by b. Repre-
senting products of transition rates by directed diagrams, the solution can be
written

(35)

where D = DQ1 + DQ2 + DQ3 = det(A) is the sum of all of the directed diagrams.
King and Altman (1956) show that, in general, the probability of state i is equal to
the sum of all diagrams directed towards state i divided by the sum of all directed
diagrams. Hill (1977) gives an interesting alternative proof of the validity of this
method that does not refer to Cramer’s rule.

The net flux J clockwise around the cycle is given by

J = Q1k12 − Q2k21

= (36)

where the last expression is obtained after a cancellation of terms. This evoca-
tive difference between diagrams is easy to remember and appeals to biophysi-
cists. The same structure is preserved in the generalized method introduced
later.
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4.2. Construction of the generalized King–Altman dictionary

We have constructed the single-particle and Grotthuss framework models by tak-
ing the diffusion limit of random walks. From these limits we obtained the Smolu-
chowski equation on intervals of states, boundary conditions, and normalization
conditions. These boundary value problems may be solved directly. However, we
will show that the framework models are also solved by the limits of the solutions
of the random walks. This section demonstrates the construction of several com-
ponents of those limits, which will be entries in a dictionary give in Section 4.3.

Similar to the original King–Altman method, state probabilities calculated by
the generalized method will always be expressed as a limit of a ratio of directed
diagrams. The ratio will have the form

Q = DQ
D (37)

where DQ is a sum of directed diagrams directed towards state Q and D is the
sum of all directed diagrams. Each directed diagram is a positive product of tran-
sition rates. The numerator and denominator of Eq. (37) will therefore be sums of
positive terms. Since all of the terms in the numerator are also found in the de-
nominator, the leading power of n in the denominator will always be equal to, or
greater than, the leading power of n in the numerator. If the numerator and de-
nominator are divided by the leading power of n in the denominator, the numer-
ator will converge to a finite limit and the denominator will converge to a finite,
positive, limit as n → ∞. Our dictionary entries will enter into the expressions for
DQ and D in state probabilities with the form of Eq. (37). We are therefore free
to simplify the entries by taking the limit n → ∞ of certain of their components so
long as these limits exist. The elementary limit laws of calculus guarantee that we
can use these simplified entries to form simplified ratios, following the pattern of
Eq. (37), then divide through by the leading power of n in the denominator, and
finally take a simplified final limit n → ∞ to calculate state probabilities by the
generalized method.

To construct the first term of the dictionary, consider the random walk de-
picted in Fig. 2(b). State Si is located at ξi = i/n. The random walk on the states
{S1, . . . , Sn} converges to a diffusion on the interval [0, 1] as n → ∞. From Eq. (1),
the product of transition rates from S1 to Sn is

1 γ1 . . . γn−1 n =
n−1∏
i=1

t−1
D n2di,i+1e[w(ξi )−w(ξi+1)]/2

= Fe[w(ξ1)−w(ξn)]/2, (38)

where

F = t−(n−1)
D n2(n−1)

n−1∏
i=1

di,i+1. (39)
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The dictionary entry can be simplified slightly by taking the limit n → ∞ only in
the exponent of Eq. (38). Define γ :

γ = F e[w(0)−w(1)]/2. (40)

We will often consider such a product of transition rates with increasing index on
a segment of a state diagram that will model diffusion. γ is the first entry of our
dictionary of directed diagrams for the generalized King–Altman method.

Now consider only those transitions within states {S1, . . . , Sn} that are directed
towards a particular site i , 1 ≤ i ≤ n, in the interval. The diagram depicting these
and the associated product of rates is

1 γ1 . . . γi−1i δi+1 . . . δn n = γ1 · · · γi−1 · δi+1 · · · δn

= F e[w(ξ1)−2w(ξi )+w(ξn)]/2. (41)

Again, let n → ∞ in the exponent to define the symbol

= F e[w(0)−2w(ξ)+w(1)]/2, (42)

where ξ1 → 0, ξn → 1, and ξi → ξ as n → ∞. The solid vertical line represents ξ ,
the value to which the arrows converge. We next sum Eq. (41) over site i :

n∑
i=1

1 γ1 . . . γi−1i δi+1 . . . δn n = Fe[w(ξ1)+w(ξn)]/2
n∑

i=1

e−w(ξi ). (43)

Multiply the right-hand side by 	ξ/	ξ where 	ξ = 1/n. The factor of 	ξ in the
numerator is used to construct a Riemann sum. Letting n → ∞ in the exponents
and sum, we define∫ 1

0

d ξ = Fn e[w(0)+w(1)]/2
∫ 1

0
e−w(ξ) d ξ. (44)

Note that the right-hand side of Eq. (44) is obtained from the right-hand side of
Eq. (42) by integrating with respect to ξ and multiplying by n.

We next consider only transitions within states {S1, . . . , Sn} that are directed
away from a missing link between sites i and i + 1. The diagram and associated
product of rates is:

1 δ2 . . . δi i i+1γi+1 . . .
γn−1 n = δ2 · · · δi · γi+1 · · · γn−1

= FtDn−2e[−w(ξ1)+w(ξi )+w(ξi+1)−w(ξn)]/2d−1
i,i+1. (45)

Take the limit n → ∞ in the exponent, where both ξi and ξi+1 → ξ ′ and di,i+1 →
d(ξ ′), to define

= FtDn−2 e−[w(0)−2w(ξ ′)+w(1)]/2d(ξ ′)−1. (46)
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The dashed vertical line represents ξ ′, the value from which the arrows di-
verge. Next, sum both sides of Eq. (45) over all possible missing links to
give

n−1∑
i=1

1 δ2 . . . δi i i+1γi+1 . . .
γn−1 n = FtDn−2 e−[w(ξ1)+w(ξn)]/2

×
n−1∑
i=1

e1/2[w(ξi )+w(ξi+1)]d−1
i,i+1. (47)

Multiply the right side by 	ξ/	ξ , using the factor of 	ξ in the numerator to
construct a Riemann sum. Let n → ∞ in the Riemann sum and the exponent
to give

∫ 1

0
d ξ ′ = FtDn−1 e−[w(0)+w(1)]/2

∫ 1

0
ew(ξ ′)d(ξ ′)−1 d ξ ′. (48)

We finally consider transitions within states {S1, . . . , Sn} that are directed towards
a site i and away from a missing link between sites j and j + 1, with i < j . The
diagram and associated products of rates is

1 γ1 . . .
γi−1 i δi+1 . . .

δ j j j+1 γ j+1 . . .
γn−1 n

= FtDn−2 e[w(ξ1)−2w(ξi )+w(ξ j )+w(ξ j+1)−w(ξn)]/2d−1
j, j+1. (49)

Take the limit n → ∞ in the exponent, where ξi → ξ and both ξ j and ξ j+1 → ξ ′.
In addition dj, j+1 → d(ξ ′) as n → ∞. Define

= FtDn−2 e[w(0)−2w(ξ)+2w(ξ ′)−w(1)]/2d(ξ ′)−1. (50)

Next, sum both sides of Eq. (49) over all possible missing links to
give

n−1∑
j=i

1 γ1 . . .
γi−1 i δi+1 . . .

δ j j j+1 γ j+1 . . .
γn−1 n

= FtDn−2 e[w(ξ1)−2w(ξi )−w(ξn)]/2
n−1∑
j=i

e[w(ξ j )+w(ξ j+1)]/2d−1
j, j+1. (51)

Multiply the right side by 	ξ/	ξ , using the factor of 	ξ in the numerator to
construct a Riemann sum. Let n → ∞ in the Riemann sum and the exponent
to give

∫ 1

ξ
d ξ ′ = FtDn−1 e[w(0)−2w(ξ)−w(1)]/2

∫ 1

ξ

ew(ξ ′)d(ξ ′)−1d ξ ′. (52)
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Summing Eq. (51) over i , we obtain

n−1∑
i=1

n−1∑
j=i

1 γ1 . . .
γi−1 i δi+1 . . .

δ j j j+1 γ j+1 . . .
γn−1 n

= FtDn−2 e[w(ξ1)−w(ξn)]/2
n−1∑
i=1

n−1∑
j=i

e[−2w(ξi )+w(ξ j )+w(ξ j+1)]/2d−1
j, j+1. (53)

Multiply the right side by 	ξ 2/	ξ 2, using the factor of 	ξ 2 in the numerator to
construct a Riemann sum. Let n → ∞ in the Riemann sum and the exponent to
give

∫ 1

0

∫ 1

ξ
d ξ ′d ξ = FtD e[w(0)−w(1)]/2

∫ 1

0

∫ 1

ξ

ew(ξ ′)−w(ξ)d(ξ ′)−1d ξ ′d ξ. (54)

4.3. The generalized King–Altman dictionary

We have constructed a list of diagrams, involving the interval [0, 1], used to find
the steady-state solutions of the three framework models discussed below:

= γ = F e[w(0)−w(1)]/2, (55)

= δ = F e[w(1)−w(0)]/2, (56)

= F e[w(0)−2w(ξ)+w(1)]/2, (57)

= FtDn−2 e−[w(0)−2w(ξ ′)+w(1)]/2d(ξ ′)−1, (58)

∫ 1

0
d ξ = Fn e[w(0)+w(1)]/2g, (59)

∫ 1

0
d ξ ′ = FtDn−1 e−[w(0)+w(1)]/2h(1), (60)

∫ 1

ξ

d ξ ′ = FtDn−1 e[w(0)−2w(ξ)−w(1)]/2[h(1) − h(ξ)], (61)

∫ ξ

0
d ξ ′ = FtDn−1 e[w(1)−2w(ξ)−w(0)]/2h(ξ), (62)

∫ 1

0

∫ 1

ξ

d ξ ′ d ξ = FtD e[w(0)−w(1)]/2[h(1)g − i], (63)

∫ 1

0

∫ ξ

0
d ξ ′ d ξ = FtD e[w(1)−w(0)]/2i. (64)
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These diagrams involve the following three integrals:

h(ξ) =
∫ ξ

0
ew(ξ ′)d(ξ ′)−1 d ξ ′, (65)

g =
∫ 1

0
e−w(ξ) d ξ, (66)

i =
∫ 1

0

∫ ξ

0
ew(ξ ′)−w(ξ)d(ξ ′)−1 d ξ ′ d ξ =

∫ 1

0
h(ξ) e−w(ξ) d ξ. (67)

Integrated diagrams are obtained as limits of Riemann sums. Formally, to pass
from a diagram to a corresponding integrated diagram, the expression to the right
is multiplied by n and integrated with respect to the independent variable. Dia-
grams (55) and (56) are special cases of diagram (57) for ξ = 1 and ξ = 0, respec-
tively. Diagram (61) → diagram (60) as ξ → 0 and diagram (62) → diagram (60)
as ξ → 1.

5. Solution of the single-particle model

5.1. Exponential boundary conditions

In this section, we apply the generalized King–Altman method to analyze the
single-particle model at steady state. Begin with the general case of exponential
boundary conditions, which are constructed by using the entrance and exit rates
defined by Eqs. (3)–(6). The probability that the pore is empty is proportional to
the sum over all diagrams directed towards the empty state:

DQE = +
∫ 1

0
d ξ ′

= γβII + δβI + βIβII

∫ 1

0
d ξ ′, (68)

where D is the sum of all directed diagrams. Note from Eqs. (3)–(6) and the dictio-
nary that each term is proportional to Fn. The probability that an ion in the pore
occupies the interval [ξ, ξ + 	ξ ] for ξ ∈ [0, 1 − 	ξ ] is obtained by summing over
all diagrams directed towards ξ .

DQ(ξ) = Dp(ξ)	ξ

= + +
∫ ξ

0
d ξ ′ +

∫ 1

ξ

d ξ ′
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= αIIcII + αIcI + βIαIIcII

∫ ξ

0
d ξ ′

+βIIαIcI

∫ 1

ξ

d ξ ′. (69)

p(ξ) is the probability density of ion occupation. Inspection of Eqs. (3)–(6) and
the dictionary shows that DQ(ξ) ∝ F and Dp(ξ) ∝ Fn. The probability that an
ion occupies the pore is proportional to

D
∫ 1

0
p(ξ) d ξ = (αIcI + αIIcII)

∫ 1

0
d ξ

+βIαIIcII

∫ 1

0

∫ ξ

0
d ξ ′ d ξ

+βIIαIcI

∫ 1

0

∫ 1

ξ

d ξ ′ d ξ. (70)

Each term is proportional to Fn. Since probability on the state diagram is normal-
ized, we have

D = DQE + D
∫ 1

0
p(ξ) d ξ. (71)

Dividing Eqs. (68) and (69) by D, we obtain expressions for QE and p(ξ) that are
independent of n.

In the ordinary King–Altman method the net flux J flowing clockwise around a
cycle is given by the cyclic diagram flowing clockwise around the cycle minus the
cyclic diagram flowing counterclockwise (Hill, 1977). Equation (36) gives an ex-
ample. This property is inherited by the generalized King–Altman method as can
be seen by considering the limit n → ∞ of a difference between cyclic diagrams.
For the case of the single-particle model

DJ =

= αIcIγβII − αIIcIIδβI. (72)

An expression for J is obtained when this result is divided by D. A standard an-
alytical formula may be developed by dividing Eq. (72) by (71), substituting for
the transition rates using Eqs. (1)–(6), and expanding the diagrams in Eqs. (68)
and (70) using the dictionary developed in Section 4.3. For the case of a constant
diffusion coefficient, d(ξ) ≡ 1, the result agrees with the expressions obtained by
direct integration (McGill and Schumaker, 1996; Schumaker, 2002).

5.2. Confirmation of the solution

The framework model for single-particle conduction solves the time-independent
Smoluchowski Eq. (12) with boundary conditions, Eqs. (16) and (17), and the
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normalization condition, Eq. (18). It is easy to verify directly that the solution
we have constructed using the generalized King–Altman method satisfies these
equations.

First, note that the normalization condition, Eq. (18), is satisfied by construc-
tion, since Eq. (71) is used to define D. We next consider whether p(ξ) as defined
by Eq. (69) satisfies the Smoluchowski equation. But this expression is a linear
combination of diagrams (57), (61), and (62). Diagram (57) is proportional to the
Boltzmann density exp(−w(ξ)) which is the solution of the Smoluchowski equa-
tion at thermodynamic equilibrium (corresponding to J = 0 in the Nernst–Planck
Eq. (13)). Diagrams (61) and (62) include terms proportional to the Boltzmann
density or exp(−w(ξ))h(ξ). Differentiation of this latter expression verifies that
it is also a solution of the Smoluchowski equation. It follows that the expres-
sion for p(ξ) constructed by the King–Altman method satisfies the Smoluchowski
equation.

It remains to be seen that the boundary conditions are satisfied. Consider the
boundary condition on side I, Eq. (16). Solve for J , multiply by D, and then express
the coefficients of DQE and Dp(0) in terms of the proton entrance and exit rates
using Eqs. (3) and (4). Obtain

DJ = DQEαIcI − Dp(0)	ξβI. (73)

Direct substitution on the right-hand side using Eqs. (68) and (69), with ξ → 0,
followed by cancellation of terms yields the expression on the right-hand side of
Eq. (72). This shows that the solution constructed using the King–Altman method
satisfies Eq. (16). An analysis of the boundary condition on side II, Eq. (17), is
similar.

5.3. Levitt boundary conditions

The entrance and exit rates corresponding to Levitt boundary conditions are ob-
tained by multiplying the right-hand sides of Eqs. (3)–(6) by n. Transition rates
in the interval 0 ≤ ξ ≤ 1 are still given by Eqs. (1) and (2). As a result, only the
last term on the right-hand side of Eq. (68) and only the last two terms on the
right-hand side of Eq. (70) are of dominant order in n:

DQE = βIβII

∫ 1

0
d ξ ′ + o(Fn3), (74)

D
∫ 1

0
p(ξ) d ξ = βIαIIcII

∫ 1

0

∫ ξ

0
d ξ ′ d ξ

+βIIαIcI

∫ 1

0

∫ 1

ξ
d ξ ′ d ξ + o(Fn3), (75)

where o(Fn3) denotes terms of higher order in n−1 than Fn3. When J is calculated
as a ratio by dividing the right-hand side of Eq. (72) by D and letting n → ∞, only
the terms given explicitly on the right-hand sides of Eqs. (74) and (75) survive in
the denominator. For the case of constant diffusion, the result agrees with that
obtained by direct integration (Levitt, 1986; Schumaker, 2002).
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6. Solution of the Grotthuss conduction model

6.1. Construction of the solution

In this section, we solve the Grotthuss conduction model, Eqs. (28)–(33), using
the generalized King–Altman method. The state diagram is shown by Fig. 5(a).
The model is constructed as the n → ∞ limit of the random walk shown in
Fig. 5(b). Calculation reveals that directed diagrams of that random walk whose
missing transition links a lumped state with the empty segment have one less fac-
tor of n than other directed diagrams. After dividing through by D and letting
n → ∞, their contribution goes to zero. These diagrams have open circles signi-
fying lumped states in expressions given later. For simplicity, their contributions
are neglected in the expressions that follow them. Site indices increase to the left
on the empty segment (Fig. 5(b)). Thus, for example, γ E involves a product of
transitions to the left. Once the diagram expressions are expressed as products of
transition rates and dictionary entries, the empty segment terms are oriented left
to right, consistent with the dictionary. To reduce clutter, the labeling of values ξ s′

that arrows diverge from (marked by dashed cuts through diagrams), and values
ξ s that arrows converge to (marked by solid cuts through diagrams), have been
omitted from built-up diagram expressions.

To begin the development of diagram expressions, the probability of being in
the lumped state on side I is

DQb
I = +

∫ 1

0
d ξ H′ + +

+
∫ 1

0
d ξ E′ +

(76)

= γ HβIIηIIγ
EνI + βIβIIηIIγ

EνI

∫ 1

0
d ξ H′ + δHβIηIIγ

EνI

+ νIIαIIcIIδ
HβIνI

∫ 1

0
d ξ E′ + o(FH FEn4), (77)

where Fs, s ∈ {H, E} is given by Eq. (39) with tD → ts and di,i+1 → ds
i,i+1. The prob-

ability of being in the lumped state on side II is

DQb
II = +

∫ 1

0
d ξ H′ + +

+
∫ 1

0
d ξ E′ + (78)
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= γ HβIIηIδ
EνII + βIβIIηIδ

EνII

∫ 1

0
d ξ H′ + δHβIηIδ

EνII

+ νIαIcIγ
HβIIνII

∫ 1

0
d ξ E′ + o(FH FEn4). (79)

The probability of being in the proton interval [ξ H, ξ H + 	ξ ] for ξ ∈ [0, 1 − 	ξ ]
is

DQH(ξ H) = DpH(ξ H)	ξ H

= +
∫ ξ

0
d ξ H′ +

∫ 1

ξ

d ξ H′

+ + +
∫ 1

0
d ξ E′

+ (80)

= ηIδ
EνIIαIIcII

+βIηIδ
EνIIαIIcII

∫ ξ H

0
d ξ H′

+βIIηIIγ
EνIαIcI

∫ 1

ξ H
d ξ H′ + ηIIγ

EνIαIcI

+ νIIαIIcIIνIαIcI

∫ 1

0
d ξ E′ + o(FH FEn3). (81)

Notice that the last term given explicitly in Eq. (81) is proportional to the prod-
uct cIcII. It arises from the second-to-last diagram in Eq. (80), which includes en-
trances on both sides I and II. This pair of entrances is due to the structured nature
of the empty state. No such term arises in the expression for the denominator of the
single-particle model because the empty state is a simple point in the state space.
The probability of being in the empty interval [ξ E, ξ E + 	ξ E] for ξ ∈ [0, 1 − 	ξ ]
is

DQE(ξ E) = DpE(ξ E)	ξ E

= +
∫ 1

0
d ξ H′ + +
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+
∫ 1

0
d ξ E′ +

∫ 1

0
d ξ E′ + (82)

= γ HβIIηIIηI

+βIηIβIIηII

∫ 1

0
d ξ H′

+ δHβIηIηII

+ νIIαIIcIIδ
HβIηI

∫ ξ E

0
d ξ E′

+ νIαIcIγ
HβIIηII

∫ 1

ξ E
d ξ E′ + o(FH FEn3). (83)

Finally, the net flux J is

(84)

= αIcIγ
HβIIηIIγ

EνI − αIIcIIδ
HβIηIδ

EνII. (85)

Again, D represents the sum of all directed diagrams,

D = DQb
I + DQb

II + D
∫ 1

0
pH(ξ H) d ξ H + D

∫ 1

0
pE(ξ E) d ξ E. (86)

Expressions for the probabilities, Qb
I and Qb

II, densities, pH(ξ) and pE(ξ), and cur-
rent J can be obtained by substituting from the expressions for the transitions
rates, Eqs. (19)–(27), and from the dictionary, Eqs. (55)–(63), dividing by D, can-
celing a common factor in the numerator and denominator, and letting n → ∞.
Calculation of D involves integrating over the densities, and therefore replacing
diagrams in Eqs. (81) and (83) by integrated diagrams. For example, diagrams de-
fined by Eqs. (57), (61), and (62) are replaced by the integrated diagrams defined
by Eqs. (59), (63), and (64), respectively.

The expression obtained for J agrees with the result of direct integration
(Schumaker et al., 2001) when specialized to the case of constant diffusion co-
efficients and fN = 0. Formulas for Qb

I , Qb
II, pH, and pE have not been published

previously, even in a special case. The diagram method shows that expressions for
all of these quantities have the form of ratios, with a common denominator. Even
without forming the detailed expression for J , it is clear that it will have the form

J = (cIeψI − cII)/(a0 + a1cI + a2cII + a3cIcII), (87)
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where a0, a1, a2, and a3 are positive and do not depend on the excess proton con-
centrations, cI and cII, in the bulk. This shows that, under conditions of symmetri-
cal concentrations, cI = cII = c, and for ψI > 0 fixed, the current as a function of
c has a maximum value for some c = cmax > 0, and is concave down on an inter-
val (0, cinf) that includes cmax in its interior. Therefore, the mechanism sketched in
Fig. 4 can never account for the shoulder in the current data of Gowen et al. (2002).
This insight limits the present Grotthuss mechanism to modeling proton conduc-
tion through gramicidin in the regime of low proton concentrations and supports
the suggestion that the shoulder in the current data signifies the onset of a con-
duction mechanism in which the pore may be occupied by more than one excess
proton.

6.2. Confirmation of the solution

The Grotthuss model solves the Smoluchowski equation (28) with the boundary
conditions, Eqs. (29)–(32), and the normalization condition, Eq. (33). We now ver-
ify that the solution we have constructed by the generalized King–Altman method
satisfies these equations. The solution is normalized by construction, since Eq. (86)
is used to define D. Furthermore, the Smoluchowski equations (28) are satisfied.
The expressions for pH(ξ) and pE(ξ), proportional to Eqs. (81) and (83), are lin-
ear combinations of the diagrams (57), (61), and (62) (for w = wH and w = wE,
respectively). These diagrams individually satisfy the Smoluchowski equations, as
described above in Section 5.2. Note that diagram (60) is independent of ξ .

It remains to be seen that the boundary conditions are satisfied. First, consider
Eq. (29), which involves pE(1) and Qb

I . From Eq. (83) we have

DpE(1)	ξ = γ HβIIηIIηIγ
E + βIηIβIIηIIγ

E
∫ 1

0
d ξ H′

+ δHβIηIηIIγ
E + νIIαIIcIIδ

HβIηI

∫ 1

0
d ξ E′

+ o(FH FEn3). (88)

Terms of dominant order in n are proportional to ηI and, from Eq. (77), those
terms in DQb

I are proportional to νI with the same coefficient:

DQb
I /νI = DpE(1)	ξ/ηI + o(FH FE n2). (89)

Multiply by νI, substitute for νI	ξ/ηI using Eqs. (25) and (26), divide by D, and let
n → ∞ to obtain the boundary condition on side I, Eq. (29). The analysis of the
boundary condition Eq. (30) is similar.

Next, consider the boundary condition Eq. (31). Solve for J and multiply by D.
The coefficients of DQb

I and DpH(0) can be expressed in terms of entrance and
exit rates, using Eqs. (21) and (22), yielding

DJ = DQb
I αIcI − DpH(0)	ξβI, (90)
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which is confirmed to leading order in n by substitution from Eqs. (77) and (81).
This shows that Eq. (31) is satisfied in the limit n → ∞. A similar analysis confirms
boundary condition Eq. (32).

7. The diffusive shaking stack

7.1. The framework model

The Grotthuss model is an elaboration of the single-particle model. However,
framework models of ion permeation can also be constructed for conduction
mechanisms that involve more than one ion in the pore. The shaking stack model
of ion conduction through the Ca2+-activated K+ channel (Schumaker, 1992) is a
variant of the vacancy diffusion mechanism (Schumaker and MacKinnon, 1990).
It was originally formulated as a random walk model, involving a cycle of states in
which the pore is occupied by either m − 1 or m ions. Molecular dynamics simula-
tions have encountered a pathway for ion conduction through the KcsA K+ chan-
nel that is similar to the shaking stack mechanism (pathway a–c–d–e–f in Fig. 2
of Bernèche and Roux, 2001), although more recent simulations that take into ac-
count an applied field prefer a knock-on mechanism (Bernèche and Roux, 2003).
In addition, two sets of KcsA conductance data have been rationalized in terms of
a very simple model (Nelson, 2002, 2003), which can be obtained from the shak-
ing stack model in the limit that the translocation rate of the stack of m − 1 ions
becomes very rapid. This section generalizes the shaking stack model so that trans-
port of the stack of m − 1 ions is described diffusively, which is more realistic than
the discontinuous hopping implicit in the random walk models.

The state diagram for a diffusive shaking stack model is given in Fig. 7(a). In gen-
eral, this mechanism involves an isolated state of m ions (at the apex) coupled with
a segment of m − 1 ion states. The cartoons depict a triply occupied state T cou-
pled with a segment of doubly occupied states D, consistent with X-ray evidence
for ion occupancy of the pore of the KcsA K+ channel (Morais-Cabral et al., 2001).

Fig. 7 (a) State diagram for the diffusive shaking stack model for m = 3. The triply occupied state
T is coupled with the segment of doubly occupied states D. (b) Random walk used to construct
the state diagram.
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States at the ends of the D segment are lumped in order that the model includes
exponentially distributed entrances into the T state. The rates of ion entrance are
given by the same formulas, Eqs. (21) and (23), as for the Grotthuss model. The
rates of ion exit from the triply occupied state are

βI = t−1
a e− fXψI , (91)

βII = t−1
a e fXψI . (92)

In contrast to Eqs. (22) and (24), these rates are not proportional to n. The exit rate
is positive and finite in the limit n → ∞ because exit occurs from a point state of
positive probability. Fig. 7(b) shows the random walk used to construct the shaking
stack model. The transition rates for the component that converges to the doubly
occupied segment are given by

γi = t−1
D n2di,i+1 e[w(ξi )−w(ξi+1)]/2, (93)

δi = t−1
D n2di,i−1 e[w(ξi )−w(ξi−1)]/2, (94)

νI = t−1
D n2a e fBψI , (95)

νII = t−1
D n2a e− fBψI , (96)

ηI = ηII = t−1
D n. (97)

These expressions are similar to those given by Eqs. (19), (20), and (25)–(27).
In the diffusion limit, the random walk between the doubly occupied states at

the base of Fig. 7(b) converges to the Smoluchowski equation,

(d(ξ)pD
′(ξ))′ + (d(ξ)w′(ξ)pD(ξ))′ = 0. (98)

pD(ξ) is the probability density for the system to be in the doubly occupied state
with reaction coordinate ξ , corresponding to a specific configuration of water
molecules and two K+ ions in the pore. The following boundary conditions are
obtained

Qb
II = pD(0) a e− fBψI , (99)

Qb
I = pD(1) a e fBψI . (100)

Probability balance holds between the triply occupied state and the lumped states
at each end of the doubly occupied segment, yielding the algebraic equation

QT(βI + βII) = Qb
I αIcI + Qb

IIαIIcII. (101)

The probabilities and densities satisfy the normalization condition

QT + Qb
I + Qb

II +
∫ 1

0
pD(ξ) d ξ = 1. (102)
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Equations (98)–(102) give the framework model for the diffusive shaking stack.

7.2. Construction of the solution

Begin by calculating the common denominator D. First consider DQT , the sum
of diagrams directed towards the triply occupied state T. Similar to the Grotthuss
model, directed diagrams whose missing transition links a lumped state with the
doubly occupied segment have one less factor of n than other directed diagrams,
and their contribution vanishes in the limit n → ∞.

DQT = +
∫ 1

0

+

= ηIδνIIαIIcII + νIαIcIνIIαIIcII

∫ 1

0
d ξ ′ + ηIIγ νIαIcI + o(Fn3).

(103)

Notice that the second term of the last line is proportional to the product
cIcII. The diagram expansion shows that this arises because of the structure of
the doubly occupied state. The probabilities of the lumped states bI and bII are
given by

DQb
I =

∫ 1

0

+

= νIIαIIcIIβIνI

∫ 1

0
d ξ ′ + βIνIγ ηII + νIγ ηIIβII + o(Fn3),

(104)

DQb
II = + + + +

∫ 1

0
d ξ ′

+

= βIηIδνII + ηIδνIIβII + νIIβIIαIcIνI

∫ 1

0
d ξ ′

+ o(Fn3). (105)
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The probability of being in the doubly occupied interval [ξ, ξ + 	ξ ] for ξ ∈
[0, 1 − 	ξ ] is

DQ(ξ) = DpD(ξ)	ξ

=
∫ ξ

0
d ξ ′ + + +

+ +
∫ 1

ξ

d ξ ′

= νIIαIIcIIβIηI

∫ ξ

0
d ξ ′ + (βI + βII)ηIηII

+ νIαIcIβIIηII

∫ 1

ξ

d ξ ′ + o(Fn2). (106)

The common denominator D is given by the sum of all directed diagrams

D = DQT + DQb
I + DQb

II + D
∫ 1

0
pD(ξ) d ξ, (107)

where calculation of the integral involves integrating the diagrams on the last line
of Eq. (106) with respect to ξ over the interval [0, 1]. The net flux J from side I to
side II is proportional to the difference of cyclic diagrams:

DJ =
= αIcIβIηIIγ νI − αIIcIIβIIηIδνII. (108)

An analytical formula can be obtained by expanding the diagrams in these expres-
sions using the dictionary developed in Section 4.3. As with the Grotthuss model,
the current has the form given by Eq. (87).

7.3. Confirmation of the solution

The solution is normalized by construction, since the denominator of all of
the state probabilities is defined by multiplying Eq. (102) by D and then using
Eqs. (103)–(105) and the integral of the terms given explicitly on the right-hand
side of Eq. (106). The Smoluchowski equation is satisfied since the expression for
pD(ξ), from Eq. (106), will be a linear combination of the dictionary diagrams de-
fined by Eqs. (57), (61), and (62). Each of these components, separately, satisfy the
Smoluchowski equation.

The boundary conditions for the Smoluchowski equation are also satisfied. Con-
sider Eq. (99). From Eqs. (105) and (106), we find that

DQb
II/νII = Dp(0)	ξ/ηII + o(Fn). (109)
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Multiply by νII, substitute for νII	ξ/ηII from Eqs. (96) and (97), divide by D, and
let n → ∞ to obtain the boundary condition, Eq. (99). The boundary condition
(100) can be confirmed similarly.

Finally, it is easy to see that Eq. (101) is satisfied. Multiply Eq. (103) by βI +
βII, and Eq. (104) by αIcI and Eq. (105) by αIIcII. Substitute the resulting right-
hand sides into Eq. (101), divide by D, and let n → ∞ to show that the algebraic
equation is satisfied.

8. Summary and conclusion

Framework models are relatively simple stochastic models designed to incorpo-
rate potentials of mean force and diffusion coefficients calculated from detailed
molecular simulations of biomolecules. They have been developed to bridge the
gap in time scales between computer simulations and conductance measurements
(McGill and Schumaker, 1996; Schumaker et al., 2000, 2001; Gowen et al., 2002;
Bernèche and Roux, 2003). Even when the advance in computer technology over-
comes the gap, framework models may remain useful as simple conceptual models
of the dynamics described by the simulations.

This article constructs three framework models of ion permeation through mem-
brane channels as the diffusion limit of random walks. The constructions obtain
boundary conditions that enforce constraints on ion occupancy in the channel
pores. In the single-particle and Grotthuss models, at most a single permeant ion
occupies the pore. In the KcsA potassium channel model of Bernèche and Roux
(2003), either two or three ions can occupy the permeation pore. In the diffusive
shaking stack model, introduced in this paper, ion occupancy is limited to either
m − 1 or m ions in the pore.

Random walks are also used in traditional models of enzyme kinetics (King and
Altman, 1956; Hill, 1977). The King–Altman method is a diagrammatic procedure
developed by enzyme kineticists to compute and analyze steady-state solutions of
those random walks, and is very convenient when the random walk state diagrams
have only one or two cycles of states. We have applied the King–Altman method to
sequences of random walks with only one cycle and converging to diffusions, and
obtained a generalized method for calculating solutions of the systems of ordinary
differential equations and algebraic equations that are the limits of the random
walks. With the dictionary of diagram components that we have developed, the
generalized King–Altman method can be much easier to implement than direct
integration of these systems.

We have applied the generalized King–Altman method to an analysis of the
single-particle model, the Grotthuss model, and a diffusive generalization of the
shaking stack model. The method obtains the analytical solution of the Grotthuss
model much more rapidly than direct integration and also reveals that rate limit-
ing degrees of freedom of the empty pore state are responsible for the predicted
decrease in proton conductance at very high symmetrical concentrations in the
surrounding solution. This paper has also introduced a new framework model, the
diffusive shaking stack model. Ion conductance is again predicted to decrease at
very high symmetrical concentration of permeant ion in the surrounding solutions,
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and the generalized King–Altman method shows that this is due to rate limiting
degrees of freedom of the m − 1 state.

A comparison can be made between random walk models of ion perme-
ation, which have been popular in ion channel biophysics since the early 1970s
(Heckmann and Vollmerhaus, 1970; Läuger, 1973), and the framework mod-
els described here. Random walk models approximate the state space of a sys-
tem by a discrete set of points. They have the very great virtue of simplicity.
When describing transitions over sufficiently high potential barriers and between
well-defined potential wells, they can approximate diffusion (Kramers, 1940). A
frequent difficulty with random walk models lies in determining physically sig-
nificant values for a large number of free parameters. Framework models are
generalizations of the random walk models: They approximate the state space
of a system by a collection of line segments and points. The states of the sys-
tem on the line segments evolve according to Smoluchowski equations, which
approximate the generalized Langevin equations obtained by the projection of
high-dimensional Hamiltonian dynamics to one coordinate. As we obtain exact
solutions to the diffusion equations, our approach does not require that the po-
tential have well-defined barriers or wells. For example, in the framework model
for proton conduction through gramicidin, the proton occupied state has no po-
tential barrier and only a shallow well (Fig. 4(b)). The potentials of mean force
and diffusion coefficients of the Smoluchowski equation may be obtained from
molecular dynamics simulations, reducing the number of free parameters in these
models.

These results are limited to framework models that can be parameterized by
a single reaction coordinate. Recently, several potentials of mean force have
been calculated as a function of two or three reaction coordinates (Bernèche
and Roux, 2001, 2003; Yu et al., 2003; Cohen and Schulten, 2004). Schumaker
and Watkins (2004) construct a single-particle model with two reaction coor-
dinates. The methods they use can be adapted to construct other models in
two reaction coordinates and generalization to three reaction coordinates ap-
pears to be straightforward. Generally, these models must be solved numer-
ically. However, in some cases the reaction dynamics seem to follow quasi-
one-dimensional pathways within the higher dimensional state spaces (Bernèche
and Roux, 2001, 2003; Cohen and Schulten, 2004). It may be that effective
one-dimensional state spaces can be constructed for such systems and the
generalized King–Altman method applied to analyze the resulting permeation
models.
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