Skip to main content Skip to navigation
School of Mechanical and Materials Engineering Modeling, Motion, and Medical Robotics Laboratory (M3 Robotics Lab)

High school students visit M3 robotics lab

On Wednesday morning, M3 robotics lab was host to visiting high school students. The aim of this visit was to grab the attention of the kids to areas such as Engineering and Robotics ad encourage them to think about engineering as their future majors and later as careers.

Professor Swensen started off with asking who is actually interested in robotics to see how many of them will change their minds at the end of the day. He continues with an introduction to robotics and grabbed the attention of the kids with introducing movies such as I-Robot and then mentioned some of the real-life robots such as Darpa robot. He continues by mentioning human-robot interaction and why is it important to incorporate safety in robots because the robots will interact with human beings. Another topic that was brought up in the introduction was the aging society and how it puts burden on people in terms of taking care of senior citizens. He brought of the notion of assistive robotics that can help this aging population.

The second part of the visit was the introduction of the research that was going on in the lab. The kids became acquainted with steerable needles and soft robotics. They also became acquainted with two notions of “plastic” and “elastic” and at the end of the visit they could distinguish the difference between the two. They observed a tendon mimicking robot that bends when heated and the students experienced its function with their own fingers. the kids also became acquainted with Nitinol needles and that they are made out of Nickel and Titanium.

The last part of the visit was working on an inchworm robot that was printed in 3D printer and the kids put a metal on it and heated it either using a hot tool or moving electrical current through the metal part. The heat made the worm bend and when there was no heat the worm was back to its original shape causing it to move. At this part, they were really engaged in the process and was absorbed in making the inchworm work.

Heon’s paper is accepted at the ASME 2016 Conference

Heon’s paper entitled “Design and experimentation of a tunably-compliant robotic finger using low melting point metals” is accepted at the ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS 2016) held on September 28-30, 2016, Stowe, VT, USA.
Hi paper is about fabrication and testing of a tunably-compliant tendon-driven finger implemented through the geometric design of a skeleton made of the low-melting point Field’s metal encased in a silicone rubber. The initial prototype consists of a skeleton comprised of two rods of the metal, with heating elements in thermal contact with the metal at various points along its length, embedded in an elastomer. The inputs to the systems are both the force exerted on the tendon to bend the finger and the heat introduced to liquefy the metal locally or globally along the length of the finger. Selective localized heating allows multiple joints to be created along the length of the finger.

Fabrication of the project was accomplished via a multiple step process of elastomer casting and liquid metal casting. Heating elements such as power resistors or Ni-Cr wire with electric connections were added as an intermediate step before the final elastomer casting. The addition of a tradition tendon actuation was inserted after all casting steps had been completed. While preliminary, this combination of selective heating and engineered geometry of the low-melting point skeletal structure will allow for further investigation into the skeletal geometry and its effects on local and global changes in device stiffness.

The published paper

New 3D Printer

Lulzbot Taz 6A brand new Lulzbot TAZ 6 3D printer has arrived at the lab!

Rapid prototyping is a key part of research here at the M3 Robotics Lab; our experiments often require small, custom parts designed for very specific purposes. Having a 3D printer in the lab gives us the flexibility to modify designs and print new parts on our own whenever we need them.

The TAZ 6 features a large print volume (nearly the volume of a soccer ball), automatic bed leveling, and automatic tool head cleaning. The TAZ 6 is also compatible with a wide variety of filament materials and tool head upgrades. We are excited to begin using this technology in the M3 Robotics Lab!

Lab name chosen

After consulting with friends, family, and former colleagues, I have settled on a name for the lab.

Modeling, Motion, and Medical Robotics Laboratory

which will be known in short as the

M3 Robotics Lab.

Stayed tuned for a lab logo!

Research assistantship offers have been made to two students and we are excited to begin the challenges of research, grant writing, teaching, and building a new lab together.