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Abstract

The chapter describes two algorithmic paradigms, dubbed Specula-
tion and Iteration and Approximate Update, for parallelizing greedy
graph algorithms and vertex ordering algorithms, respectively, on multi-
core architectures. The common challenge in these two classes of algo-
rithms is that the computations involved are inherently sequential. The
efficacy of the paradigms in overcoming this challenge is demonstrated via
extensive experimental study on two representative algorithms from each
class and two Intel multi-core systems. The algorithms studied are: (i)
greedy algorithms for distance-k coloring (for k = 1 and k = 2) and (ii) al-
gorithms for two degree-based vertex orderings. The experimental results
show that the paradigms enable the design of scalable methods that to a
large extent preserve the quality of solution obtained by the underlying
serial algorithms.

Introduction

Greedy graph algorithms—where an optimization problem defined on a graph
is solved by processing vertices (or edges) sequentially one at a time, at each
step making the “best local” decision—occur frequently in computations. For
some graph problems, Minimum Spanning Tree, for instance, a greedy algorithm
is indeed the way to get an optimal solution. For NP-hard graph problems
that occur as a part in a larger computation, greedy algorithms are often the
methods-of-choice as they provide good approximate solutions at low, often
linear, runtime. Further, greedy algorithms naturally fit in the framework of
streaming algorithms (Alon et al., 1999), where input is fed one item at a time.
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In some greedy algorithms iterating over vertices, the order in which vertices
are processed determines the quality of the solution obtained by the greedy
algorithm. One may then need to find, for example, a degree-based ordering,
where the vertices of a graph are ranked such that the vertex at each position
is of maximum or minimum degree in a suitably defined induced subgraph.
Degree-based ordering techniques may also be needed in their own right as a
stand-alone procedure for an independent objective.

These two inter-related classes of algorithms, greedy algorithms and ordering
procedures, have one common feature: the computations involved are inherently
sequential. Existing parallel algorithm design techniques, such as divide-and-
conquer, partitioning, pipelining, pointer-jumping, etc, that are commonly dis-
cussed in parallel computing books (Jájá, 1992; Grama et al., 2003; Kurzak
et al., 2010) fall short as useful guidelines for effectively parallelizing such al-
gorithms. The parallel algorithm developer’s “design toolbox” thus needs to
be augmented with new techniques, especially in the present era where parallel
computing has established itself in the mainstream.

Contributions of This Chapter

This chapter contributes to this goal by focusing primarily on multi-core and
multi-threaded architectures. Specifically, the chapter examines two design
paradigms that turn out to be effective for parallelizing inherently sequential
algorithms. The first paradigm, dubbed Speculation and Iteration, aims
at parallelizing greedy algorithms. The second, named Approximate Update,
targets parallelization of ordering algorithms.

The key idea in Speculation and Iteration is to:

maximize concurrency by tentatively tolerating potential inconsisten-
cies and then detecting and resolving eventual inconsistencies later,
iteratively.

For this approach to be successful (in leading to scalable methods), inconsis-
tencies need to be relatively rare occurrences. We demonstrate that this is in
fact the case for practical problems by applying the paradigm to parallelize
greedy algorithms for distance-k coloring (for k = 1 and k = 2). We find,
for instance, that the inconsistencies discovered in the very first iteration in the
resultant parallel coloring algorithms run on moderate-scale computing environ-
ments typically involve less than one percent of the total number of vertices for
large, sparse graphs. More generally, the number of inconsistencies will depend
on the ratio between the number of vertices and threads and the density of the
input graph.

The key idea in the Approximate Update paradigm is to:

minimize synchronization cost by opting for concurrent data struc-
ture update with approximate data instead of serialized data structure
update with exact data.
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Obviously, the solution output by a parallel algorithm designed with this paradigm
is not guaranteed to be the same as a solution obtained by a sequential algo-
rithm. This is not a major concern, however, since in most computations needing
ordering, a slight deviation from the optimal (serial) ordering is not only toler-
able but a welcome tradeoff to enable parallelization. We consider in this work
the parallelization of two vertex ordering types, known as Smallest Last (SL)
(Matula, 1968) and Incidence Degree (ID) (Coleman and More, 1983), as rep-
resentatives of our second target class of algorithms. For each of these ordering
variants, we study an approximate degree update approach for parallelization.
We show that the approach gives a scalable method that does not incur too
much loss in quality of solution relative to a serial algorithm whereas a method
that insists on exact degree update does not scale.

SL and ID ordering and greedy coloring algorithms are closely related: the
orderings can be used in an initialization step of the coloring algorithm to reduce
the number of colors used. However, SL and ID orderings are also of independent
interest because of their use in areas outside coloring, including network analysis
and linear solvers.

As platforms for evaluating the scalability of the parallel coloring and order-
ing algorithms designed using the proposed paradigms, we experiment with two
moderate-size (desk-side or desk-top) multi-core systems based on Intel proces-
sors. We show that our algorithms generally scale well on both platforms, with
varying performance on each.

The remainder of this chapter is organized around the two paradigms. First,
this introductory section is wrapped up with a brief review of related work.
The second section discusses Speculation and Iteration and the associated
coloring problems, and the third section treats Approximate Update and
the associated ordering problems. The datasets and computing platforms used
in the experiments (common to both paradigms) are discussed in the second
section.

Related Work

The Speculation and Iteration design paradigm is an outgrowth of a se-
ries of previous works in which the focus was the design of parallel algorithms
for specific graph problems. The basic idea of using speculation for paralleliz-
ing greedy graph coloring algorithms was first introduced in Gebremedhin and
Manne (2000). There it was used in the context of shared-memory paralleliza-
tion of coloring algorithms, albeit without iteration. Instead, the conflict reso-
lution phase was carried out just once, serially on one processor. The idea was
later enhanced with randomization in Gebremedhin et al. (2002).

Speculation together with iteration formed the core of the framework for
parallelizing distance-1 coloring on distributed-memory architectures developed
in Bozdağ et al. (2008). The framework addressed a variety of additional perfor-
mance requirements entailed by a distributed-memory setting: the input graph
needs to be partitioned in a manner that minimizes communication cost; the
speculative coloring phase performs better when organized in a coarse-grained
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fashion with infrequent communications; the coloring of interior and boundary
vertices needs to be scheduled carefully; etc. The framework was later extended
to distance-2 coloring, where mechanisms for minimizing inter-processor com-
munication in conflict detection and resolution are even more critical (Bozdağ
et al., 2010).

A multi-threaded algorithm for distance-1 coloring derived from the frame-
work of Bozdağ et al. (2008) and adapted for shared-memory multi-core archi-
tectures has been studied in Catalyurek et al. (2012). In the same work, the
architecture-portable, speculation-based multi-threaded algorithm is contrasted
with a dataflow-based multi-threaded algorithm custom-designed for the Cray
XMT.

Several other recent research activities have successfully used speculation
ideas for parallelization (Patwary et al., 2012; Sariyuce et al., 2011, 2012). Ini-
tial work on one of the approximate degree updates methods discussed here was
presented in Patwary et al. (2011). Although developed in an entirely different
context, ideas behind distributed auction algorithms (Zavlanos et al., 2008),
broadly interpreted, bear some resemblance to the speculation paradigm dis-
cussed here. In yet another different context, the term speculation (or optimistic
parallelization) is also used to refer to compiler and/or runtime techniques for
automatic parallelization of serial codes (Pingali et al., 2011; Tian et al., 2009).

Speculation and Iteration

We begin this section with an abstract presentation of the Speculation And
Iteration parallelization paradigm. We then illustrate its use by applying it
to parallelize greedy algorithms for graph coloring problems.

Generic Formulation

Suppose the input graph is G = (V,E), the problem of interest involves op-
erations on vertices, and there are p processing units, where p � |V |. We
can formulate the Speculation and Iteration design technique in a generic
fashion as shown in Algorithm 1. There, U denotes the set of “active” vertices.

The approach outlined in Algorithm 1 presupposes that resolving an in-
consistency can be achieved via local re-evaluations. Intuitively, its viability is
directly related to the rate at which the size of U drops from one iteration to
the next—the faster the rate, the more viable the approach is. In other words,
the approach is effective when the size of eventual inconsistencies discovered in
an iteration is relatively small. We showcase the efficacy of this approach using
greedy algorithms for distance-k coloring, for the cases k = 1 and k = 2. We
proceed by first reviewing the underlying serial greedy coloring algorithms. We
then discuss their parallelizations and show performance results. The dataset
and platforms used for performance evaluation are discussed prior to the pre-
sentation of the performance results.
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ALGORITHM 1: Generic formulation of the Speculation and It-
eration parallelization paradigm.

Input: Graph G = (V,E) and p processing units
1 U ← V (U is the set of active vertices);
2 while U is non-empty do
3 Partition U in to p nearly equal subsets U1, . . . , Up, and assign each

subset to a distinct processing unit;
4 Solve the p sub-problems defined by the p subsets in parallel making

speculative decisions as needed;
5 Check the validity of the p sub-solutions in parallel registering

inconsistencies;
6 Reset U such that it contains only elements needing resolution;

7 end

(a) Distance-1 coloring (b) Distance-2 coloring

Figure 1: Illustration of a distance-1 and a distance-2 coloring of a graph on nine
vertices. The distance-1 coloring example uses three colors with color classes
{a, d, e, f, i}; {b, c}; and {g, h}. The distance-2 coloring uses six colors with
colors classes {a, i}; {b, f}; {c, d}; {e}; {g}; and {h}.

Serial Coloring

A distance-k coloring of a graph G = (V,E) is an assignment of positive integers,
called colors, to vertices such that any two vertices connected by a path consist-
ing of at most k edges receive different colors. See Figure 1 for an illustration
of distance-1 and distance-2 coloring. The objective in the distance-k coloring
problem is to minimize the number of colors used. The problem is NP-hard for
every fixed integer k ≥ 1 (Lin and Skiena, 1995).

Algorithms Despite known hardness (including in-approximability) results
on distance-1 coloring, previous work has shown that a greedy algorithm—an
algorithm that visits vertices sequentially in some order in each step assigning
a vertex the smallest permissible color—is quite effective in practice (Coleman
and More, 1983). We review in Algorithm 2 an efficient formulation of the
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ALGORITHM 2: A greedy distance-k coloring algorithm. The color-

indexed array forbiddenColors is used to mark impermissible colors to a vertex.

Input: Graph G = (V,E)
Output: an array color[v] denoting colors assigned to vertices

1 Initialize forbiddenColors with some value a /∈ V ;
2 for each v ∈ V do
3 for each w ∈ Nk(v) do
4 forbiddenColors[color[w]] ← v;

5 end
6 c ← min{i ≥ 1 : forbiddenColors[i] 6= v};
7 color[v] ← c;

8 end

greedy distance-k coloring algorithm.
In Algorithm 2, and elsewhere in this chapter, Nk(v) denotes the set of

distance-k neighbors of the vertex v. The data structure color is a vertex-
indexed array that stores the color of each vertex. The color-indexed array
forbiddenColors is used to mark colors that are impermissible to a vertex v in a
given step of the outer for-loop over vertices. In doing so, the vertex v itself is
used as a ‘stamp’ thereby avoiding the need for re-initialization of forbiddenCol-
ors in a later step in which another vertex is colored. By the end of the inner
for-loop of Algorithm 2, all of the colors that are impermissible to the vertex
v are recorded in forbiddenColors. In Line 6, the array is scanned from left to
right in search of the lowest positive index i at which a value different from v is
encountered. The index i corresponds to the smallest permissible color c to the
vertex v—and is thus assigned to v in Line 7.

The work done in populating the array forbiddenColors is proportional to
dk(v), where dk(v), denoting “degree-k”, is the number of edges in the graph
induced by the vertices in Nk(v) ∪ {v}. The search for the smallest allowable
color c (Line 6) terminates after at most |Nk(v)|+ 1 attempts, since the worst
possible scenario is when each of the |Nk(v)| neighbors of v uses a distinct
color in the sequence {1, 2, . . . , |Nk(v)|}; otherwise the sequence would contain
a permissible color for v, allowing earlier termination. Thus the time complexity
of Algorithm 2 is O(|V | ·dk), where dk is the average degree-k in the graph. This
reduces to O(|V | · d1) = O(|E|) for distance-1 coloring. For distance-2 coloring,
the expression can be bounded by O(|E| ·∆), since d2 can be bounded by d1 ·∆,
where ∆ is the maximum degree in the graph.

Bounds on Number of Colors We quickly review obvious lower bounds
on distance-1 and distance-2 coloring as well as upper bounds on the solution
obtained by Algorithm 2 for the two coloring cases. The size of the largest
induced clique in G, the clique number ω of G, is clearly a lower bound on
the optimal number of colors needed for distance-1 coloring of G. Algorithm 2
in the distance-1 coloring case uses at most ∆ + 1 colors, where again ∆ is the
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maximum degree in G. The quantity ∆ is a lower bound on the optimal number
of colors needed to distance-2 color G. Algorithm 2 in the distance-2 coloring
case uses at most min{∆2 + 1, |V |} colors. The stated lower and upper bounds
on distance-2 coloring imply that Algorithm 2 in the distance-2 coloring is an
O(

√
|V |)-approximation algorithm (McCormick, 1983).

Ordering The order in which vertices are processed in Algorithm 2 (Line 2)
determines the number of colors used by the algorithm. Two ordering techniques
known to be particularly effective in reducing number of colors—to values sig-
nificantly lower than the bound ∆ + 1 in the case of distance-1 coloring—are
Smallest Last (Matula, 1968; Matula et al., 1972) and Incidence Degree (Cole-
man and More, 1983). We use these two ordering techniques in our study of
parallel coloring algorithms in this chapter. We defer a discussion of the details
of the ordering techniques and their effective parallelization to the Approximate
Update section.

Parallelization

We set out to parallelize Algorithm 2 using the Speculation And Iteration
scheme we outlined in Algorithm 1. Let G = (V,E) be the input graph, and
p denote the number of available threads (processing units). We partition the
vertex set V equally among the p threads. To ensure reasonable load balance,
we assume that G is of bounded maximum degree. Our goal is to parallelize
Algorithm 2 such that its complexity becomes O(Ts(|G|)/p), where Ts(|G|) is
the runtime of the underlying serial algorithm. Algorithm 3 summarizes the key
steps of the parallelized version.

The algorithm runs in rounds in an iterative fashion. Each round has two
phases each of which is performed in parallel. In the first phase in each round,
the current set of vertices to be colored (U) is equally divided among avail-
able threads. The threads then concurrently color their respective vertices in a
speculative manner, paying attention to already available color information. In
this phase, two vertices that are distance-k neighbors with each other and are
handled by two different threads may be colored concurrently and receive the
same color, causing a conflict. In the second phase, threads concurrently check
the validity of colors assigned to their respective vertices in the current round
and identify a set of vertices that needs to be re-colored in the next round to
resolve any detected conflicts. The algorithm terminates when every vertex has
been colored correctly.

In the event of a conflict, it suffices to re-color only one of the two involved
vertices to resolve the conflict. The function r(·) in Line 12 of Algorithm 3 is
used to decide which of the two vertices to re-color. There are several choices
for the function r(·): one can use, for example, vertex IDs or random numbers
associated with each vertex.

On a PRAM (Parallel Random Access Machine (Jájá, 1992)) model, the
parallel runtime in each round of Algorithm 3 is bounded by O(|U | · dk/p),
assuming the input graph is of bounded maximum degree. Thus, provided
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ALGORITHM 3: A Speculation and Iteration parallel algorithm for

distance-k coloring. The array forbiddenColors is private to each thread.

Input: Graph G = (V,E)
Output: An array color indicating colors of vertices

1 U ← V ;
2 while U 6= ∅ do
3 for each vertex v ∈ U in parallel do
4 for each vertex w ∈ Nk(v) do
5 forbiddenColors[color[w]] ← v;
6 end
7 c ← min{i ≥ 1 : forbiddenColors[i] 6= v};
8 color[v] ← c ;

9 end
10 R← ∅ (synchronization);
11 for each vertex v ∈ U in parallel do
12 if there exists a vertex w in Nk(v) such that color [v] = color [w]

and r(v) > r(w) then
13 R← R ∪ {v} (critical);
14 Stop search in Nk(v);

15 end

16 end
17 U ← R (synchronization);

18 end

that the algorithm terminates after a constant number of iterations, the overall
complexity of the parallel algorithm is O(|V | · dk/p).

Setup for Performance Analysis

Implementation We implemented Algorithm 3, and also the parallel order-
ing algorithms to be discussed in Section 18, in C++ using OpenMP. The al-
gorithms could, however, be implemented in any other programming model
allowing threading. The performance of the resultant implementations depends
on the manner in which tasks (a task in this case is work associated with a
vertex) are scheduled on threads. OpenMP provides various scheduling options
(static, dynamic, guided, runtime). In the results we report in this section
and elsewhere in this chapter we use the option dynamic since it gave the best
performance for a majority of our test cases.

Test platforms We use as our test platforms two moderate-size multi-core
systems based on Intel processors. Table 1 gives an overview of the basic archi-
tectural features of the platforms along with information on the compilers we
used. In all cases, the codes are compiled with -O3 optimization level. To further
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Table 1: Summary of architectural features of the two Intel platforms used in
our experiments.

Xeon E7-4850 Core i7-860
“Westmere-EX” “Lynnfield”

(Nehalem-based Xeon) (Nehalem microarch.)

Clock speed 2.0 GHz 2.8 GHz

# of sockets 4 1
Cores/socket 10 4
Threads/socket 20 8
Total cores 40 4

Memory 132 GB 16 GB
L3 cache, shared 20 MB 8 MB
L2 cache/core 256 KB 256 KB

Socket type LGAa 1567 LGA 1156

Release date 2011 2009

Compiler v 4.8.0 v 4.5.4
(GNU, g++)

S ource: See http://ark.intel.com for further information

Notes: aLand Grid Array

improve performance in running the codes, we also use compiler-provided en-
vironment variables for realizing thread affinity (kmp affinity) and mechanisms
for realizing non-uniform memory access (numaactl).

Table 2: Structural properties of the graphs in the testbed.

|V | |E| ∆ ω |V | |E| ∆ ω |V | |E| ∆ ω
er1 262K 2,097K 98 3 g1 262K 2,094K 558 6 b1 262K 2,068K 4,493 35
er2 524K 4,194K 94 3 g2 524K 4,190K 618 6 b2 524K 4,153K 6,342 39
er3 1,049K 8,389K 97 3 g3 1,049K 8,383K 802 6 b3 1,049K 8,318K 9,453 43
er4 2,097K 16,777K 102 3 g4 2,097K 16,768K 1,069 6 b4 2,097K 16,645K 14,066 ≥ 51
er5 4,194K 33,554K 109 3 g5 4,194K 33,542K 1,251 6 b5 4,194K 33,341K 20,607 ≥ 58

Dataset Our dataset consists of graphs generated using the R-MAT model (Chakrabarti
and Faloutsos, 2006). We generated three types of graphs, named er, g and b,
using the following R-MAT parameters:

er: (0.25, 0.25, 0.25, 0.25)

g: (0.45, 0.15, 0.15, 0.25)

b: (0.55, 0.15, 0.15, 0.15)

These three graph types vary widely in terms of degree distribution of vertices
and density of local subgraphs. Therefore, they represent a wide spectrum of
input types posing varying degrees of difficulty for the coloring and ordering
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Table 3: Number of iterations and number of vertices colored in each iteration
of the distance-1 coloring and distance-2 coloring versions of Algorithm 3 for
select runs on the Xeon E5.

D1 color. D2 color.
# # |U | # |U |
threads rounds in each round rounds in each round

er5 16 2 4,194K → 17 2 4,194K → 394
24 2 4,194K → 19 2 4,194K → 795
32 2 4,194K → 44 3 4,194K → 938 → 1

g5 16 2 4,194K → 136 8 4,194K → 2,164 → 151 → 48 → . . . 3 → 1
24 2 4,194K → 119 9 4,194K → 2,209 → 344 → 105 → . . . 4 → 2
32 2 4,194K → 153 10 4,194K → 2,458 → 536 → 187 → . . . 3 → 1

b5 16 3 4,194K → 209 → 2 20 4,194K → 11,525 → 2,086 → 1,046 → . . . 2 → 1
24 2 4,194K → 515 26 4,194K → 16,217 → 3,503 → 1,908 → . . . 3 → 1
32 3 4,194K → 377 → 1 24 4,194K → 20,747 → 5,240 → 2,438 → . . . 2 → 1

algorithms we consider. The er graphs (for Erdös-Renyi random graphs) have
normal degree distribution. The g and b graphs in contrast have skewed-degree
distributions and contain many more dense local subgraphs than the er graphs.
The g and b graphs differ primarily in the magnitude of maximum vertex degree
they contain—the b graphs have much larger maximum degree (see Catalyurek
et al. (2012) for an analysis of the structures of similarly generated RMAT
graphs).

Table 2 lists the number of vertices, the number of edges, the maximum
degree ∆ and the clique number ω in each graph in the testbed. Computing
the clique number of a graph is an NP-hard problem. We calculated the clique
numbers in Table 2 using fast maximum clique algorithms (exact and heuristic)
we implemented (Pattabiraman et al., 2013). For the two graphs b4 and b5,
since the execution time of the exact, maximum clique algorithm was high, we
settled for a solution provided by the heuristic, which finds a large, but not
necessarily a largest clique in a graph. The listed numbers there, 51 and 58, are
therefore lower bounds on the clique numbers.

Performance Results

Scalability

As discussed in Section 8, the scheme outlined in Algorithm 3 would scale if
the number of iterations the algorithm needs to terminate is relatively small.
We find that number to be very small indeed in the extensive experiments we
carried out with different types of input graphs and levels of concurrency. For
the distance-1 coloring version of Algorithm 3, in particular, the number of
iterations needed was typically found to be just two or three. Understandably,
the distance-2 coloring version needed more iterations to terminate, but still the
algorithm typically terminated within at most about two dozen iterations when
the highest number of threads are employed.

Furthermore, especially in the distance-1 coloring case, we observed that
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typically more than 99.9% of the vertices get their final colors in the first round!
Put in another way, the number of conflicts that arise in the first round was
found to be typically less than 0.1%. In the subsequent iterations, the size of
conflicts, or the size |U | of the vertices to be recolored, dropped dramatically
from one iteration to the next. As an example of these observations, we give in
Table 3 the number of iterations and the size of the set U in each iteration in
the parallel distance-1 coloring and parallel distance-2 coloring algorithms for
three of the largest graphs and select runs on the Xeon E5 machine.

The magnitudes of the number of iterations in Table 3 in general suggest
that the Speculation and Iteration approach for parallelizing coloring al-
gorithms is a viable framework. Looking at the numbers, it can be envisioned
that best performance in terms of speedup might be attained if one were to stop
the iteration and switch to sequential treatment of U once a predefined cutoff
value for |U | has been attained. We do not pursue this line of thought here.
We work instead with the basic variant of Algorithm 3, where every iteration is
performed in parallel.
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Figure 2: Speedup of distance-2 coloring on the two platforms and three
classes of graphs er, g and b.

Figure 2 shows speedup plots we obtain for the parallel distance-2 coloring
algorithm for experiments run on the two test platforms and using all of the
graphs in the dataset. In Figure 3 we show analogous results for the distance-1
coloring algorithm, but only for the er graphs in the dataset. We used in these
experiments an approximate SL ordering (which we will discuss in Section 18)
to reduce the number of colors used. In the plots in figures 2 and 3, the runtimes
of the ordering step are, however, excluded for clarity of presentation.
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Figure 3: Speedup of distance-1 coloring on the two platforms and the er

class of graphs.

From Figure 2 it can be seen that the distance-2 coloring algorithm scales
well across both platforms and all graphs in the testbed. Further, it can be
seen from Figure 3 that the scalability in the distance-1 coloring case is poorer
than in the distance-2 coloring case, even though the number of iterations the
distance-1 coloring algorithm needed was much smaller than what the distance-
2 coloring algorithm needed. This is because the work involved in distance-1
coloring (which is O(|E|)) is substantially less than that in distance-2 coloring
(which is O(|E| · ∆)), and hence the algorithm is more sensitive to memory
performance.

We point out one difference we observe concerning performance on the Xeon
E7 machine compared to performance on the Core i7 machine. In the speedup
plots for the Xeon E7 machine in figures 2 and 3 (and elsewhere in this chapter),
we report results for up to 40 threads, which amounts to using one thread per
core out of the two available via hyperthreading. We do so because we did
not observe any significant further reduction in runtime in going beyond 40
threads. In contrast, for the Core i7 machines, we report results for up to
the maximum possible threads, which is 8. This amounts to taking advantage
of hyperthreading. As can be seen from the results in figures 2 and 3, some
performance gain can be achieved by doing so on these machines. It should
be noted here that the ideal speedup expected in using two (hyper)threads on
a single processor is considerably less than two—it is observed to be at most
about 1.5 for most Intel architectures (Barker et al., 2008). In light of this, the
decrease in slope of the speedup plots we see in figures 2 and 3 for the segments
beyond 4 threads on the Core i7 is in agreement with one’s expectation.

In the plots in figures 2 and 3 (and in similar plots in Section 18), the
speedups are calculated by normalizing runtimes by the execution time of the
relevant parallel algorithm run on one thread. This normalizing quantity is not
the same as the pure sequential algorithm’s runtime. In Table 4 we list raw
execution times in seconds, on the Xeon E7 machine, of a parallel algorithm
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(e) D1 coloring, g graphs
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Figure 4: Number of colors used in distance-2 coloring (top) and distance-1
coloring (bottom) while using an approximate SL ordering. The tests are run
on the Xeon E7 machine with varying number of threads (1, 10, 20, 30, 40). The
lowest bar in each subfigure, labeled lb, shows the lower bounds on the number
of colors: ∆ in the distance-2 coloring case and ω in the distance-1 coloring case.

run on one thread and of the corresponding sequential algorithm for a number
of different algorithms of interest in this chapter. The results relevant for our
discussion here are those of the distance-1 coloring and distance-2 coloring al-
gorithms. These are indicated in the table by boldface fonts. We will return to
the rest of the data in the table in the Approximate Update section.

Quality of Solution

We have so far presented experimental results on runtime and speedup. We now
turn to the quality of the solution obtained by the parallel algorithms.

Previous research has established that the serial greedy distance-k color-
ing algorithm (Algorithm 2), when employing ordering techniques such as SL,
gives near optimal solution on most practically relevant classes of graphs. We
find that its parallelization using the speculation paradigm results in runtime
speedup without compromising the quality of the solution obtained by the serial
algorithm. Figure 4 supports this claim.

The upper row of the figure shows the number of colors the parallel distance-2
coloring version of Algorithm 3 uses while employing an approximate SL order-
ing for runs conducted on the Xeon E7. In each subfigure, six bars are shown
for each graph. The shortest bar shows the maximum degree (∆) in a graph,
which is a lower bound on the optimal number of colors needed to distance-2
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Table 4: Runtime in seconds of the pure sequential algorithms, and of the
parallel algorithms when run using one thread, on the Xeon E7 machine. For
the SL ordering algorithm, two parallelizations are considered: Regular (Reg)
and Relaxed (Rel).

Sequential Parallel, 1 thread Parallel, 1 thread
SL coloring

SL D1 D2 Reg Rel D1 D2
er1 0.21 0.06 1.17 0.33 0.21 0.11 1.66
er2 0.52 0.17 3.12 0.77 0.50 0.31 4.72
er3 1.26 0.49 9.28 1.89 1.23 0.89 14.78
er4 3.46 1.28 23.88 5.30 3.78 2.36 41.09
er5 10.49 3.68 66.00 16.45 10.74 6.44 101.27
g1 0.21 0.06 2.20 0.36 0.20 0.10 2.88
g2 0.49 0.14 5.37 0.81 0.47 0.27 7.63
g3 1.20 0.42 17.17 1.89 1.16 0.74 25.32
g4 3.06 1.13 46.96 4.82 3.17 2.05 70.34
g5 8.24 3.07 123.99 12.46 8.56 5.57 190.39
b1 0.18 0.05 7.89 0.56 0.18 0.08 9.46
b2 0.43 0.11 20.19 1.20 0.43 0.21 25.68
b3 0.87 0.31 69.81 2.50 0.98 0.55 93.78
b4 2.12 0.82 211.64 5.59 2.40 1.50 291.16
b5 5.13 2.05 606.23 13.26 5.89 3.78 860.43

color a graph. The remaining five bars correspond to the number of colors used
by the parallel algorithm when run using five different numbers of threads: 1,
10, 20, 30 and 40. The lower row of Figure 4 shows entirely analogous results for
the parallel distance-1 coloring algorithm. In each subfigure there, the shortest
of the six bars shows the clique number (ω) in a graph, which is a lower bound
on the optimal number of colors needed to distance-1 color a graph.

We point out two observations from these results. First, it can be seen that
the number of colors the parallel algorithm uses remains nearly constant as the
number of threads is increased. This is true for both the distance-2 coloring
and the distance-1 coloring algorithms. Note here that the number of colors
the parallel algorithm uses when one thread is employed (bars labeled 1 thd in
the figures) is the same as the number of colors the serial algorithm would have
used. Let us call this number C1thd.

Second, it can be seen that the number C1thd is fairly close to the lower
bound on the optimal solution (bars labeled lb in the figures). Since a gap is ex-
pected to exist between the lower bound on the optimal solution and the optimal
solution, C1thd would actually be even closer to the optimal solution. Proceed-
ing with comparison against the lower bound nonetheless, we observe that these
algorithms do offer low approximation ratios. In the distance-1 coloring case,
for instance, the number of colors in each subfigure is observed to be just a
small constant γ times the lower bound ω. In the worst cases, γ is observed to
be about 3 for the er graphs, 4 for the g graphs, and 2 for the b graphs.
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Approximate Update

As mentioned in the Introduction, we use algorithms for obtaining Smallest Last
and Incidence Degree orderings as examples to illustrate our second paralleliza-
tion paradigm, Approximate Update. We begin by reviewing the properties
of these orderings and their serial algorithms. Then we discuss their paralleliza-
tion and present performance results.

Degree-based Vertex Orderings

We define SL and ID ordering in terms of a dynamic degree concept we call
back degree (Gebremedhin et al., 2013). In an ordering π = v1, v2, . . . , vn of the
vertices of a graph G = (V,E), the back degree of the vertex vi is the number of
distance-1 neighbors of vi in G that are ordered before vi in π.

An SL ordering π is defined from highest to lowest, vn to v1. Initially, the
back degree b(v) of every vertex is equal to its degree d(v,G) in G. The last
vertex vn is a vertex with the smallest back degree. With vn determined, the
back degree of every distance-1 neighbor of vn, by definition, is then the original
value minus one. The next vertex in the ordering, vn−1, is a vertex with the
smallest back degree among the remaining n − 1 vertices. Suppose the last
n− i− 1 entries of the ordered vertex set have been determined. The ith vertex
in the ordering is then a vertex with the smallest back degree among the vertices
U = V \ {vn, vn−1, . . . , vi+1} that are yet to be ordered.

An ID ordering π is defined from lowest to highest, v1 to vn. Initially, the
back degree of every vertex is equal to zero. The first vertex v1 is a vertex
with the largest back degree (note that since all back degrees are zero, any one
of the vertices would qualify). With v1 determined, the back degree of every
distance-1 neighbor of v1, by definition, is then the original value plus one. The
next vertex in the ordering, v2, is a vertex with the largest back degree among
the remaining n−1 vertices. Suppose the first i−1 entries of the ordered vertex
set have been determined. The ith vertex in the ordering is then a vertex with
the largest back degree among the vertices U = V \ {v1, v2, . . . , vi−1} that are
yet to be ordered.

Algorithms

We give in Algorithm 4 a template for an efficient implementation of the ordering
techniques SL and ID. Table 5 shows how the template is specialized to give SL
or ID. The sparse, two-dimensional array B in Algorithm 4 is a vehicle used for
arriving at efficient implementation. The array, itself implemented as a vector of
vectors with total size |V |, is used to maintain vertices that are not yet ordered
in bins according to their dynamic degrees. Specifically B [j] stores a set of
unordered vertices where each member vertex u has a current back degree b(u)
equal to j. The output of Algorithm 4 is given by the ordered list W of the
vertices where W [i] stores the ith vertex in the ordering.
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ALGORITHM 4: Template for SL and ID Ordering. B is a sparse, two-

dimensional array maintaining unordered vertices binned according to their

back degrees.

Input: Graph G = (V,E)
Output: An ordered list W of the vertices in V

1 for each vertex v ∈ V do
2 init b(v);
3 B [b (v)]← B [b (v)] ∪ {v};
4 end
5 init i;
6 while check i do
7 identify j∗, min (or max) index j with B [j] 6= ∅;
8 Let v be a vertex drawn from B [j∗];
9 W [i]← v;

10 B [j∗]← B [j∗] \{v};
11 for each vertex w ∈ N1 (v) such that w is in B do
12 B [b (w)]← B [b (w)] \{w};
13 update b (w);
14 B [b (w)]← B [b (w)] ∪ {w};
15 end
16 update i;

17 end

We determine the ith vertex in the ordering in constant time by maintaining
a pointer to the last element in B[j∗], where j∗ is the smallest (or largest) index
j such that B[j] is non-empty. Once the ith vertex v in the ordering is deter-
mined (and removed from B), each unordered vertex w adjacent to v is moved
from its current bin in B to an appropriate new bin. With suitable pointer
techniques the relocation of each vertex can also be performed in constant time
(Gebremedhin et al., 2013). Thus the work involved in the ith step of Algo-
rithm 4 is proportional to d(v,G), and the overall complexity of the algorithm
is O(|E|).

Applications

The rationale behind the ordering techniques SL and ID in the context of color-
ing is to bring vertices that are likely to be highly constrained in the choice of
colors early in the ordering and thereby reduce the number of colors used. Both
of these orderings are highly effective at doing just that. But the use of these
orderings is not limited to coloring. For instance, an SL ordering, in reverse or-
der to that obtained by Algorithm 4, can be used to determine k-cores (densely
connected subgraphs) in social and biological networks. SL ordering, and con-
sequently core computation, is also directly related to the graph-theoretic no-
tions of degeneracy and arboricity (Matula, 1968; Szekeres and Wilf, 1968; Lick
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Table 5: How Algorithm 4 specializes to SL or ID.
SL ID

init b(v) b(v)← d(v,G) b(v)← 0
init i i← |V | i← 1
check i i ≥ 1 i ≤ |V |
identify j∗ j∗ = minj{B[j] 6= ∅} j∗ = maxj{B[j] 6= ∅}
update b(w) b(w)← b(w)− 1 b(w)← b(w) + 1
update i i← i− 1 i← i+ 1

and White, 1970; Matula et al., 1972; Matula and Beck, 1983; Gebremedhin
et al., 2005). Similarly, an ID ordering obtained by Algorithm 4, when reversed,
corresponds to an ordering obtained by the maximum cardinality search algo-
rithm (Tarjan and Yannakakis, 1984), which is useful in determining chordality
of a graph.

Parallelization

We consider two different approaches for the parallelization of the ordering tem-
plate depicted in Algorithm 4 (Patwary et al., 2011). The first approach aims
at parallelizing the ordering template closely maintaining the serial behavior,
while the second approach settles for an approximate solution in favor of in-
creased concurrency, thus falling under the Approximate Update paradigm.
Both approaches apply equally to SL an ID ordering. To simplify presentation,
however, we discuss only the SL case here. We denote by t (v) the thread with
which the vertex v is initially associated.

The First Approach: Regular The first task this approach parallelizes is
the population of the global bin array B. To achieve this, a local two-dimensional
array Bt is associated with each thread Tt, 1 ≤ t ≤ p. The p local arrays are
first populated in parallel. Then, the contents are gathered into the global array
B, where the parallelization is now switched to run over bins. The remainder
of the algorithm mimics the serial algorithm (Algorithm 4). In the serial algo-
rithm, in each step of the while loop, a single vertex—a vertex with the smallest
current dynamic degree j∗—is ordered and its neighbors’ locations updated in
B. However, the bin B[j∗] could contain multiple vertices. The approach Reg-
ular takes advantage of this opportunity and strives to order such vertices and
update their neighborhoods in parallel. This gives rise to a variety of race con-
ditions. The approach involves careful handling of these, including the use of
frequent atomic and critical statements. Because of the use of these statements
the parallel algorithm behaves much like the serial, resulting in poor scalability
(Patwary et al., 2011).

The Second Approach: Relaxed The second approach for parallelizing the
SL ordering algorithm abandons the use of the global array B altogether and
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ALGORITHM 5: A parallel SL ordering algorithm on p threads (Re-

laxed).

Input: Graph G = (V,E)
Output: Output: An ordered list W of the vertices in V

1 for each vertex v ∈ V in parallel do
2 b(v)← d(v,G);
3 Bt(v) [b (v)]← Bt(v) [b (v)] ∪ {v};
4 end
5 i← |V |;
6 for t = 1 to p in parallel do
7 while i ≥ 0 do
8 Let j∗ be the smallest index j s.t. Bt [j] 6= ∅;
9 Let v be a vertex drawn from Bt [j∗];

10 Bt [j∗]← Bt [j∗] \{v};
11 for each vertex w ∈ N1 (v) do
12 if w ∈ Bt then
13 Bt [b (w)]← Bt [b (w)] \{w};
14 b (w)← b (w)− 1;
15 Bt [b (w)]← Bt [b (w)] ∪ {w};
16 end

17 end
18 W [i]← v (critical);
19 i← i− 1 (critical);

20 end

21 end

works only with the local arrays Bt associated with each thread Tt. In updating
locations of neighbors of a vertex, a thread Tt checks whether or not the vertex
w desired to be relocated is in the thread’s local array Bt. If w is indeed in Bt,
it is relocated by the same thread. If not, it is simply ignored. In this manner,
only approximate dynamic degrees are used while computing the global ordering.
The approach is formalized in Algorithm 5.

Performance Results

The first parallelization approach, Regular, did not scale for a vast majority
of the problem-platform combinations in our experiments. As an illustration,
we give in Figure 5 speedup plots for the SL-Regular (SL-Reg) algorithm on the
two platforms and the er-graphs in the dataset; the results on the other two
graph classes (g and b) are similar or worse. In sharp contrast, we found that the
approximate update approach Relaxed yielded moderate to excellent speedups
as more threads are employed. Figure 6 shows speedup plots for SL-Relaxed
(SL-Rel) on the two platforms and all three graph classes.

The plots in figures 5 and 6 show speedups wherein runtimes are normalized
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(b) SL Regular, Core i7

Figure 5: Speedup results of the parallel ordering algorithm SL-Regular on
the two test platforms and for the er class of graphs.

by the parallel algorithm’s runtime when one thread is used. Recall that we had
provided in Table 4 a summary of the raw compute times in seconds for runs
on the Xeon E7 machine of the parallel algorithms on a single thread and of the
pure sequential algorithms for SL ordering, distance-1 coloring, and distance-2
coloring.

Incidence Degree (ID) ordering: We observed that the Regular and
Relaxed parallelization of ID ordering performed in nearly identical manners as
the corresponding parallelizations of SL ordering across both platforms. We
therefore omit presenting results on ID ordering.

Summary and Outlook

We introduced two paradigms, called Speculation and Iteration and Ap-
proximate Update, that are effective for the parallelization of two frequently
used classes of graph algorithms on multi-core architectures. The two classes
of graph algorithms are greedy algorithms and vertex ordering procedures, re-
spectively. We demonstrated the efficacy of the paradigms on two representa-
tive algorithms from the class of greedy algorithms (distance-1 and distance-2
coloring) and two representative algorithms from the class of vertex ordering
procedures (Smallest Last ordering and Incidence Degree ordering). As test
platforms we used two Intel multi-core systems (Xeon E7 and Core i7).

We observe that the Speculation And Iteration paradigm has inter-
esting connections with the theoretical model called Local Computation Algo-
rithms (Rubinfeld et al., 2011). We also note that the Approximate Update
paradigm can be viewed within the broader theme of design of concurrent data
structures (Shavit, 2011). Both of these connections are worthwhile directions
for future research.
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Figure 6: Speedup results of the parallel SL-Relaxed ordering algorithm on
the two test platforms and for the three classes of graphs er, g and b.
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