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Observations in Lacamas Lake, WA
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Motivation: Nutrient Pollution (NO;’)
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Fluctuations in turbulent mixing
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Big variations in near-bed mixing resulting from periodic stratification resulting from internal waves
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Trlpods deployed on Lakebed
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Full-depth velocity profiles
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Diurnal waves,
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Diurnal waves,
upward phase propagation

Along-lake velocity (ms™)
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- - -- Theoretical internal wave propagation.

wave —> C; =210° )\ /N N = [—(g/ﬁ)@ﬁ/@z]l/z, o=frequency, p=density
speed



Elevation above bed (m)

Diurnal waves,
upward phase propagation

Along-lake velocity (ms”)
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- - -- Theoretical internal wave propagation.

Fitted horizontal wavelength (A, =3000 m) about twice lake length.



Diurnal waves,

upward phase propagation

Along-lake velocity (ms”)
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- - -- Theoretical internal wave propagation.
—— Theoretical energy propagation.



Temperature Profiles
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temperature transects measured along-
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Across-lake: geostrophy

Geostrophy (thermal wind)
observed for across-lake forces
above bottom boundary layer
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White circle: velocity into page
Black circle: out of page
Radius proportional to speed

du/oz = (pf) ' gop/ v,

Velocity gradient:
— Observed

-0~ Inferred from thermal wind
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Like seiches, the observed waves had wavelength

exceeding lake length.

Unlike standard seiches, the observed waves propagated

vertically.

Geophys. Res. Lett., 39, L06405, doi:10.1029/ 2011GL050534.



Like seiches, the observed waves had wavelength

exceeding lake length.

Unlike standard seiches, the observed waves propagated

vertically.

Why?



Elevation (m)

Nodal structure?

e Velocity spectra peak at elevation 1m, with second peak ~¥4.5m. Antinodes?
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spectra measured by upward- and downward-looking ADCPs
Blanked out elevations (1.5-1.8m) span location of ADCP
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Elevation (m)

Nodal structure

L . using theoretical internal wave propagation theory
e Fitting vertically-propagating waves to observations 1.7 — 4.6 m above bed

(A, =R*A_, wavelength = 1284 m), reproduces observed power spectra..
up down

Power (m23_1)

Note reflection coefficient R is frequency-dependent fitting parameter
- this asks what reflection coefficient best fits data
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using theoretical internal wave propagation theory

Steve Henderson
Note reflection coefficient R is frequency-dependent fitting parameter
- this asks what reflection coefficient best fits data


Upward phase propagation

e Upward phase propagation consistent with downward energy propagation.
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Partial reflection

Non-dissipative seiches would have R=1
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Non-dissipative seiches would have R=1

Steve Henderson
Blue dots: fitted
(ignore black line for now)


Energy balance

From hourly mean velocity, fitting From turbulent velocity
waves to upward ADP measurements _— statistics, downward ADP
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Predicting Reflection

Seiche theory —> 1 @

_ Reflected amplitude
Incident amplitude
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wave speed * observed

K=2(8x)"C,

theory

constant
 Reflection was weak because

vertical wave speed small (c=10*ms1), because
Lacamas lake is small.

* Published data indicates vertical propagation in some other

small lakes.
| think this sort of vertical propagation might be widespread in small lakes
Leading-order departure from standard seiche idea.
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