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Phase-averaged flow

Velocities dominantly along-lake, but deflected 200 ¥~

left in bottom boundary layer.
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For several weeks of data, every time was associated with a waves phase,
with phase varying 360 deg in each (roughly diurnal) wave cycle. Then all
data with roughly the same phase averaged, to produce phase averages
shown above.

Therefore, phase average shows something like the "average wave".

Note leftward deflection in bottom boundary layer - similar to bottom
Eckman layer, but magnitude of deflection smaller than in classic Eckman
Layer
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For several weeks of data, every time was associated with a waves phase,
with phase varying 360 deg in each (roughly diurnal) wave cycle.  Then all data with roughly the same phase averaged, to produce phase averages shown above.  
Therefore, phase average shows something like the "average wave".  

Note leftward deflection in bottom boundary layer - similar to bottom Eckman layer, but magnitude of deflection smaller than in classic Eckman Layer


Phase-averaged ﬂow
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Phase-averaged flow

Velocities dominantly along-lake(v), but
deflected left in bottom boundary layer.

Temperature and stratification lag downslope
flow (negative u) by = 90°.

Richardson numbers always >0.25 above
boundary layer, intermittently >0.25 in
boundary layer.
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Phase-averaged flow
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Turbulent Reynolds stress estimated by differencing along-beam velocity variances.
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Turbulent Reynolds stress estimated by differencing along-beam velocity variances.  

Steve Henderson



Phase-averaged flow

* Velocities dominantly along-lake(v), but
deflected left in bottom boundary layer.

 Temperature and stratification lag downslope

flow (negative u) by 90°.

* Richardson numbers always >0.25 above
boundary layer, intermittently >0.25 in
boundary layer.

* Reynolds stress varied with elevation within 0.5 <

m of bed.

Cd not strongly phase-dependent
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Phase-averaged drag coefficient: C, =Re
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Buoyancy fluctuations

Vertically integrated balance:
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Buoyancy fluctuations result from up/downslope advection of water
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Buoyancy fluctuations result from up/downslope advection of water


Along-lake velocity fluctuations

* Vertically integrated balance:
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At 1 cycle/day, along-lake balance is primarily between Coriolis and
bed stress - like in classic Eckman layer
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At 1 cycle/day, along-lake balance is primarily between Coriolis and 
bed stress - like in classic Eckman layer
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Across-lake velocity fluctuations

* Vertically integrated balance:
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For x-lake flow, balance is not primarily between Coriolis and bed stress
(classic Eckamn balance), but instead buoyancy is largest term, as expected
given the large Buger number.
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Eulerian Mean Flows
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When daily fluctuations associated with waves are averaged out, residual mean is small, with along-lake & downslope boundary layer jet
dominant
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When daily fluctuations associated with waves are averaged out, residual mean is small, with along-lake & downslope boundary layer jet 
dominant


Wave-averaged along-lake force balance
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Along-lake momentum balance same as classic Eckman balance
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Along-lake momentum balance same as classic Eckman balance


Not an arrested Ekman layer

y
}{‘l‘fU—FTyb — O,
}{Jr UNZ0 =0,

Why doesn’t U =07

The standard theory says mean U should be (nearly) zero.
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The standard theory says mean U should be (nearly) zero.
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Stokes drift?

0B
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...introduces Stokes drift advection.
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Adding wave term f( e “)dz...

Stokes drift is difference between (Eulerian) mean velocity and mean particle velocity.
This difference arrises from presence of internal waves.

Stokes drift neglected in standard equations for sloping, stratified boundary layers
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Stokes drift neglected in standard equations for sloping, stratified boundary layers
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Stokes drift is difference between (Eulerian) mean velocity and mean particle velocity. 
This difference arrises from presence of internal waves.


Stokes drift?

OB ‘
i N26 =0,

. al/l\l'b“‘ aw\t'b\l'
. Adding wave term [ = By dz .,

...introduces Stokes drift advection.

Assume waves propagate without change of form.

 Stream function for Stokes drift:

u,Z ,whereZ = f w,  dt



Stokes drift?

OB ‘
i N26 =0,

ox 0z
...introduces Stokes drift advection.

. al/l\l'b“‘ aw\t'b\l'
Adding wave term [ + dz .,

Assume waves propagate without change of form.

Stream function for Stokes drift:

u,z
!

w?

where Z = f w,  dt

Boundary-normal velocity:




Estimated Stokes drift cancels Eulerian flow
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So, despite downslope Eulerian mean velocity, particles might not on average be moving downslope
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So, despite downslope Eulerian mean velocity, particles might not on average be moving downslope


Estimated Stokes drift cancels Eulerian flow
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Possible wave-driven flow?

* Hypothesis:
1. Internal waves transport dense water upslope.

2. gravitational force on dense water generates downslope

Eulerian flow (arrest holds in Lagrangian-mean sense).

3. Coriolis acting on Eulerian downslope flow drives along-

isobath flow.

(wave momentum fluxes could modify picture)
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Full-depth velocity profiles
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Sudden arrival of upslope flow
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Sudden arrival of upslope flow
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Mass transport
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See separate file on velocities in isothermal coordinates
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Here, up-slope Stokes drift is again canceling downslope Eulerian flow, to give small net transport
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Summary

Lakewide internal waves propagate vertically owing

to surface generation and lakebed dissipation.

Oscillating stratification observed, with

destratification on upslope flow.

Mean flows strongest near boundary layer,

downslope Eulerian flow not arrested.

Upslope mass transport by waves appears to roughly

cancel Eulerian downslope flow.



