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Abstract

A major challenge in developing advanced thermal processess based on electromagnetic heating is to determine the location of cold spots
in foods. A rapid and reliable method was developed in this study with the aim to effectively locate the cold spot in model food sterilized
in microwave systems. The developed method involved application of chemical marker M-2 yield to a model food, mashed potatoes, using
computer vision system and an image processing software IMAQ Vision Builder to capture and analyze color patterns after thermal processes.
A systematic study was conducted to establish relationships among M-2 yields, color values from captured images of cut food samples, and
thermal lethality (F0). Several factors including consistency of imaging background and positions of lights over the diffuser box were considered
to standardize the method. To facilitate the comparative study of heating characteristic for different combinations of power levels and F0, a
mapping scale using unheated and saturated mashed potato samples was developed by fixing the lowest and upper most gray-scale values. Color
values equivalent to gray-level values were positively correlated to F0 and M-2 yield. The specified cold spot location determined by computer
vision method was validated in a 915 MHz single-mode microwave sterilization system. The results showed that the computer vision method
can potentially be used as an effective tool in microwave sterilization process development for regulatory acceptance and industrial applications.
� 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Microwave sterilization holds promise to reduce process time
and improve product quality [1,2]. Determination of cold spot
locations in foods during microwave sterilization, however, is
a major challenge for researchers in developing processes to
ensure that the processed foods are safe to consumers. Com-
puter simulation models can help in understanding the steril-
ization process [3,4]. Simulation models, however, require val-
idation and may not always be reliable due to complexity of
the coupling of heat transfer and dielectric heating in complex
microwave sterilization cavities [5–7]. For any geometrically
complex system used to produce safe foods for consumers, an
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approach of double validation for process development was
emphasized by US food regulatory organizations [8].

It is difficult to identify the cold spots in packaged foods
during microwave sterilization processes by point temperature
measurement methods. Chemical marker methods were stud-
ied as indirect means to evaluate relative heating absorptions in
selected food systems [9–11]. Quantification of chemical mark-
ers M-1 and M-2 formed through Maillard reaction between
amino acids and reducing sugar such as ribose and glucose
required intensive laboratory analysis using high performance
liquid chromatography (HPLC). For example, to analyze a 3-D
heating pattern in processed mashed potato containing ribose
in 10 oz trays with HPLC, two persons were needed for 2.5
days to quantify M-2 yield at 40 evenly distributed points in
one tray. In process development, repeated tests are necessary
with multiple trays. Analyzing M-2 yield in those many trays
using HPLC became impractical. It was, therefore, desirable
to develop a rapid and reliable method to capture the color
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Nomenclature

a(k, l) filters weight
B blue color value
C marker yield (mg/g of sample)
C0 initial chemical marker yield (mg/g of sample)
C∞ chemical marker yield at saturation

(mg/g of sample)
Ea activation energy (kcal mol−1)

F0 cumulative thermal lethality (min)
F aperture value
f (x, y) light intensity of the points (x, y)

F (u, v) frequency domain of an image
FFT fast Fourier’s transforms
g gray level values
G green color value
H hue
L luminance
k0 reaction constant at reference temperature

M-2 chemical marker M-2
m size of matrix array
N number of pixels
R0 universal gas constant at reference

temperature (cal/mol K)
R red color value
RGB red, green, and blue color value
S saturation
sin(x, y) original gray-scale values
sout (x, y) output pixel values
t time (min)
T temperature ( ◦C)

T (t) temperature (K)
T0 reference temperature
u horizontal spatial frequency
v vertical spatial frequency
W neighborhood around the pixel
� multiplicative parameter

intensities of chemical markers (M-2) formation that reflect 3-
D heating patterns.

A novel approach based on combination of chemical marker
(M-2) yield and computer vision has been proposed as an op-
tion for evaluating the heating patterns of microwave-sterilized
foods [12]. More research was needed to standardize the method
and to establish correlation between color intensity and pro-
cess lethality. In recent years, computer vision has reached
wide-spread applications for quality inspection, classification,
evaluation of products and processes in the agri-food industry
[13–16]. An image processing based method has been stud-
ied as an optional technology for acquiring and analyzing an
image to obtain information reflecting important product at-
tributes [17–21]. A similar approach may be applied in thermal
processing applications.

The specific objectives of this study were to: (1) establish a
standard method that is not influenced by artifacts; (2) study
the correlations among color values, chemical markers (M-2)
yield and lethality (F0); (3) use direct temperature measure-
ment to validate this method in identifying the cold spot loca-
tion in packaged foods processed in the microwave sterilization
system.

The ultimate goal of this study was to develop an effective
and reliable method for cold spot detection in support of FDA
acceptance of microwave sterilization system and for future
process development in industrial applications.

2. Materials and methods

2.1. Sample preparation

Mashed potato samples with 83.12% (wet basis) moisture
content and 1.5% D-ribose were prepared similar as [6]. Eight
grams of mashed potato sample was placed and sealed into cus-
tom-builtaluminumcontainers(diameter 3.5cm×height 1.4cm)

with an air-tight lid for heating to elevated temperatures in
oil baths. A type-T thermocouple was fitted into the lid of
the container. The tip of the thermocouple was set to monitor
sample temperature at the geometric center of the aluminum
container during heating.

The cumulative lethality (F0) is used to represent the degree
of lethality of the target microorganism in a process equivalent
to heating at 121 ◦C [12]. F0 was calculated using the following
formula [12]:

F0 =
∫ t

0
10(T −121.1)/z dt (1)

where T is the sample temperature in ◦C at any time t (min)
during heating, z was taken as 10 ◦C for bacterial inactivation
[22]. Value of z for chemical marker (M-2) formation in mashed
potato was calculated as 32 ◦C using kinetics data [11].

2.2. Color palette and development of a new scale

A set of RGB (red, green, blue) values defines the rainbow
palette of the IMAQ (Image Acquisition) program (National
Instrument, Austin, TX, USA) in which varying degree of red,
green, and blue colors are mathematically combined to produce
a color value in gray-level range. National Instrument IMAQ
Vision Builder 6.1 (National Instrument, Austin, TX, USA)
assigned color value equivalent to gray-level value 255 to the
darkest pixels of the image while color value to a lightest pixel
was not fixed.

The developed scale was tested for several levels of cumu-
lative lethality (F0, min) to obtain the distinctive color value
for each level of F0. The gray-level value of the sample was
transformed to a one-dimensional color value using the color
scheme of Fig. 1. Since the full scale for color values varies de-
pending upon the range of color intensity distribution in an im-
age, for comparative study it was necessary to fix the gray-level
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Fig. 1. Concept of converting the gray-level values to color values using rainbow color palette of IMAQ vision builder program and a method to fix the scale
using mashed potato sample processed at different F0. (a) Rainbow palette. (b) New developed scale.

values to certain pixel intensity. This was done by selecting sat-
urated and a unheated mashed potato as upper and lower lim-
its to fix the full scale. Saturated samples were obtained when
limiting factor amino acids in mashed potato were consumed
during heating process and the formation of chemical marker
would reach a saturation point. Beyond this point further heat-
ing would not result in significant chemical marker formation
and color changes. The unheated mashed potato sample (marker
M-2 yield = 0 mg/g sample) was used as the lowest point of
the scale by setting color value to zero, and saturated mashed
potato sample (F0 = 38 min; marker yield = 0.268 mg/g sam-
ple) was used as the upper most point of the scale by setting
color value to 255. A third point in the middle with color value
127 ± 5 (F0 = 12 min) was set to improve the color resolution
(Fig. 1).

Look-up table of the IMAQ Vision Builder software version
6.1 was used to maintain the brightness of the scale-sample
to minimize the variation in the color value equivalent to gray
scale value during color analysis.

2.3. Computer vision system

The computer vision system consisted of a light pod; heli-
cal compact fluorescent bulb; a digital camera with right-angle
viewing attachment; automatic image acquisition software and
computer vision software installed in a 1.6 GHz RAM Dell sta-
tion (Fig. 2). A Nikon D 70 (Nikon Instrument, Melville, NY,
USA) digital camera with 18–70 mm DX Nikkor lens was fit-
ted on top of the Paterson Light Pod (Paterson Photographic
Inc., Douglassville, GA, USA). The CCD (Charge Coupled De-
vice) camera could move vertically on the stand to adjust the
magnification and its distance from the sample. Nikon Capture
4 Editor version 4.3.0 (Nikon Instrument, Melville, NY, USA)
software was used to acquire and download the images to a
Dell Workstation.

2.4. Effect of lights positions on diffuser box

In the computer vision system, lights were mounted out-
side the light pod to maintain an even illumination inside the
box. Four helical 26 W (120VAC, 60 Hz) bulbs (GE, Schenec-
tady, NY, USA) were mounted on a stand at an angle of 45◦

around a Paterson light pod “Cocoon” style medium diffu-
sion shooting tent (43 × 50 × 70 cm). The diffusion light pod
was used to prevent the incident monochromatic light source
to the object. The incident light intensity inside the diffuser
box was measured using a Sekonic exposure meter, FLASH-
MATE L-308BII (Sekonic, Elmsford, NY, USA). High quality
images were captured by matching the exposure meter read-
ings, F (Aperture value = 30) and f/s (number of frame per
second = 11), to Nikon D 70 digital camera through manual
setting.

Computer vision analysis was performed to test the consis-
tency in background for each image. To evaluate the effect of
light positions on heating patterns, lights were mounted at top,
middle and bottom positions of the light pod. Computer vi-
sion patterns for five samples heated to 110, 116, 121, 126 and
131 ◦C temperatures were compared at each position of lights
to investigate the affect of light position. Images of the heated
samples taken at each position were analyzed using IMAQ Vi-
sion Builder software to determine the RGB value equivalent
to a gray-scale value.

2.5. Color value, M-2 yield and F0 relationship

2.5.1. Sample preparation and HPLC analysis
Since the activation energy of chemical marker formation in

mashed potato Ea = 22.23 ± 1.54 kcal/mol is different from
that of bacterial inactivation (Ea = 80 ± 10 kcal/mol) [11], it
was anticipated that time-temperature history for mashed potato
samples may affect the chemical marker yield even for the same
final F0. Due to these variables two different pathways: (1) di-
rect heating to a set temperature and (2) holding at 121 ◦C for
different F0 were considered in this study. In the first set of
tests, samples sealed in aluminum containers were heated to
110, 116, 121, 126, and 131 ◦C temperatures (T ) in an oil-bath
to reach different levels of F0. In another set of tests, oil-bath
temperature was set at 121 ◦C and samples were held for a dif-
ferent period of time to cumulative lethality (F0) of 1.5, 3, 6,
9, 12, 15 and 18 min. The samples were then rapidly cooled
by immersing the aluminum containers into crushed ice. The
purpose of fast cooling was to minimize additional cumula-
tive lethality (F0) after reaching the desired F0. Each experi-
ment condition was repeated twice. Temperature and F0 of the
heated samples were monitored using data logging software



3670 R. Bhuwan Pandit et al. / Pattern Recognition 40 (2007) 3667–3676

Fig. 2. Computer vision system designed in this study.

MS Visual Basic 6 with measurement-computing software Ac-
tive X, Omega IDRX thermocouple (Omega Engineering Inc.,
Stamford, CT, USA) isolator controls, and hardware with serial
output mounted on a personal computer. Software was logging
data at an interval of 6 s.

Chemical marker M-2 yield for both sets of samples were de-
termined using the Agilent 1100 HPLC system (Agilent Tech-
nology, Palo Alto, CA, USA). Before the analyses, samples
weighing between 0.20 and 0.21 g were ground in 2 ml extrac-
tion buffer (10 mM sulphuric acid and 5 mM citric acid). Sam-
ple extraction and HPLC analysis procedures were the same as
described [11]. Additionally, chemical marker (M-2) yield dur-
ing heating process was predicted from measured temperature
using the mathematical equation [9]:

C(t) = C∞ − (C∞ − C0)

× exp

{∫ t

0
−k0 exp

(
−Ea

R0

[
1

T (t)
− 1

T0

])
dt

}
, (2)

where C(t) is marker yield at any time, C∞ marker yield
at saturation (0.268 mg/g sample), Ea is energy of acti-
vation (22.23 kcal mol−1 K−1), R0 is molar gas constant
(1.988 cal mol−1 K−1), T (t) is recorded time-temperature his-
tory at the measured point (K), and T0 is reference temperature
(396.7 K). Initial marker yield before heating, C0, was con-
sidered to be zero for freshly made mashed potato samples
containing 1.5% D-ribose. Experiments were also conducted
to compare the M-2 yield of samples taken from the middle
point of the container and samples taken by mixing the whole
container (3.5 × 1.4 cm) for HPLC analysis.

2.5.2. Image acquisition and image editing using Adobe
Photoshop

Nikon’s Capture camera control tool was used for automat-
ically acquiring and downloading the images. Sizes of the im-
ages taken were 3008 × 2000 with 24 bit per pixel, and were
saved in Joint Photographic Experts Group (JPEG) format.

Adobe Photoshop CS version 8.0 (Adobe Systems, San Jose,
CA, USA) was used to insert scale images and images to be an-
alyzed into one package. A 20×25 cm automatic picture pack-
age was divided into 5×4 layouts [23]. The first column of the
layouts was reserved for the scale samples and other columns
were used for images to be analyzed for heating patterns. Res-
olution of images in picture package was set to 500 pixels per
inch.

2.5.3. Functions in computer vision script
A computer vision script was developed through interactive

programming to determine the color patterns of heated samples.
Developed script in IMAQ Vision Builder contains functions as
shown in Fig. 3. Selection of those function tools were made
to meet the desired output, as a result of the sequential math-
ematical computation over original pixels of an image. Main
functions are described in details in the following:

(i) Look-up Table—Look-up Tables (LuT) was used to set
the brightness of the scale samples. An image (I) in rectangular
matrix was defined as [24]:

I = f [sin(x, y)], (3)

where x is row index and y is column index. The original gray-
scale values sin(x, y) can be assigned any value out of the
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Filters: Smoothing

local average

Simple Calibration
Image Mask: from

ROI

Extract Color plane:

HSL-saturation

Image Mask: from

ROI

Scale Brightness

Look up Table:

Equalize

Gray morphology:

Erode

Filters: Smoothing

highlights details

Gray Morphology:

remove small

Adv. Morphology:

remove small
FFT filters: Truncate

Grayscale: Quantify

Fig. 3. Functions of the developed IMAQ Vision Builder script for heating
pattern analysis.

gray-scale set g ={0, 1, . . . , 255} for an 8-bit image. Resulting
set of output values sout (x, y) using LuT would be

sout (x, y) = f [sin(x, y)]. (4)

For each value of g, function f (g) will have 256 possible values
in a look-up table, therefore

LuT(g) = f (g). (5)

In that case, the computed output of the LuT function becomes:

sout (x, y) = LuT(sin(x, y)). (6)

(ii) Extract color planes: HSL—IMAQ Vision Builder pro-
vides a pre-defined unique feature based on this concept to rep-
resent the gray-level value of a pixel into corresponding one
dimensional color value comprised of varying amounts of red,
green, and blue (Fig. 1). Color plane HSL (hue, saturation, and
luminance) saturation was extracted from each image to adjust
the lowest gray-level value to the lightest pixel and the highest
gray-level value to the darkest pixel of an image. The coordi-
nate system for HSL color space is cylindrical. The hue (H)
value runs from 0 ◦C to 360◦, the saturation (S) ranges from
0 to 1, and luminance (L) also ranges from 0 to 1, where 0 is
black and 1 is white. Following equations describe the nonlin-
ear transformation that maps the RGB color space to the HSL
color space [25]:

L = 0.3 × R + 0.59 × G + 0.11 × B, (7)

V 2 = √
3 × (G − B), (8)

V 1 = 2 × R − G − B, (9)

H = 256 × tan−1
(

V 2

V 1

)
/(2 × �), (10)

S = 255 ×
(

1 − 3 × min(R, G, B)

(R + G + B)

)
, (11)

where � is multiplicative parameters.

(iii) Gray morphology: erosion and dilation—These two
functions are fundamentals for almost all morphological oper-
ations. Dilation increases the brightness of pixels surrounded
by proximate pixels with a higher intensity, while erosion is
a function that basically reduces brightness of each pixel that
is surrounded by proximate pixels with a lower intensity. In
erosion, the value of output pixels is set to the minimum of
coefficients sin(x, y) as [26,24]

sout (x, y) = min(sin(x, y)) (12)

while in dilations, output of the pixels is set to the maximum
value of coefficients sin(x, y) as

sout (x, y) = max(sin(x, y)). (13)

(iv) Filters: smoothing local average—Averaging of the
brightness intensity of a pixel was performed by taking the
weighted average of the proximate pixels. The output image
in that case would be expressed as [27,28]

g(m, n) =
∑ ∑

a(k, 1)f (m−k, n−1), (k, 1)∈W , (14)

where f (m, n) and g(m, n) are the input and output images,
respectively, W is the neighborhood of the pixel at location
(m, n), and a(k, 1) are the filter weights assigned. All weights
were assigned equal values in this study; and therefore Eq. (14)
was reduced to

g(m, n) = 1

N

∑ ∑
f (m − k, n − 1), (k, 1) ∈ W , (15)

where N is the number of pixels in the proximate of W . The
purpose of spatial averaging operation on an image was to
smooth the noise. In case of an observed image, it was defined as

g(m, n) = f (m, n) + �(m, n) (16)

the spatial average of the image was calculated as

g(m, n) = 1

N

∑ ∑
f (m − k, n − 1) + �̄(m, n),

(k, 1) ∈ W , (17)

where �̄(m, n) was an average of the noise component �(m, n)

in the spatial domain of the image.
(v) Filters: smoothing highlight details—Filtering improved

the quality of the image by calculating the new pixel value
by using the original pixel value and those of its proximities.
Mathematical computation on each pixel was performed by
using the equation [24,29]

sout (x, y) = 1

m2

m−1∑
u=0

m−1∑
v=0

sin(x + k − u, y + k − v) × f (u, v).

(18)

The output pixel values sout (x, y) depends on the size of kernel
matrix (m×m). IMAQ has three predefined kernel matrices of
size m = 3, 5 and 7. Under this study, most of the calculations
were done with m = 3 and parameter k was defined as

k = (m − 1)

2
. (19)
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Indices u, and v depend on x and y with k in terms of filter
kernel function [29]. In case of kernel size 3 × 3, all nine
neighboring pixels were represented as

F = (f (u, v)) =
⎛
⎜⎝

f (0, 0) f (0, 1) f (0, 2)

f (1, 0) f (1, 1) f (1, 2)

f (2, 0) f (2, 1) f (2, 2)

⎞
⎟⎠ . (20)

Using indices x and y Eq. (20) can be elaborated as

F =
⎛
⎜⎝

f (x − 1, y − 1) f (x, y − 1) f (x + 1, y − 1)

f (x − 1, y) f (x, y) f (x + 1, y)

f (x − 1, y + 1) f (x, y + 1) f (x + 1, y + 1)

⎞
⎟⎠

(21)

this includes a pixel (x, y) with its eight proximities pixels.
(vi) Fast Fourier transforms (FFT: Low pass truncation): The

2D Fourier transforms transforms a spatial function f (x, y) of
an image into frequency domain F(u, v), which in continuous
domain, was defined as [25,24,30]:

F(u, v) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y) e−j2�(xu+yv) dx dy. (22)

The exponential function was expressed using Euler’s identity
as

exp(−j2�(xu + yv)) = cos(2�(xu + yv))

− j sin(2�(xu + yv)), (23)

where f (x, y) was the light intensity of the points (x, y), and
u, v were the horizontal and vertical spatial frequencies. Eq.
(22) implies that the function f (x, y) is essentially multi-
plied by the terms cos(2�ux) cos(2�vy), sin(2�ux) sin(2�vy),
sin(2�ux) cos(2�vy), and cos(2�ux) sin(2�vy). In case
of a symmetric function, along both the X- and Y -axes,
Fourier transform of f (x, y) involves the multiplication of
cos(2�ux) cos(2�vy) term only. But in this study, the f (x, y)

multiplication involved all four terms due to asymmetric im-
ages. Inversely fast Fourier transformed F(u, v) can be trans-
formed back into a spatial image f (x, y) of resolution N ×M:

f (x, y) =
N−1∑
u=0

M−1∑
v=0

F(u, v) ej2�(ux/N−vy/M), (24)

where F(u, v) consists of an infinite sum of sine and cosine
terms, which are determined by the corresponding frequency.
For the given set of u and v all values of f (x, y) contribute to
F(u, v). The FFT computation on the image before quantifying
the RGB values took between 2 and 10 minutes depending upon
the size of the image to be analyzed for cold spot detection.

2.6. Computer vision heating patterns for food samples using
IMAQ Vision Builder

A picture package including images of mashed potato sam-
ples in Adobe Photoshop was analyzed using IMAQ Vision
Builder program. Brightness of the scale samples were fixed
using look-up table, and regions of interest (ROI) were selected

using image mask. A developed function script (Fig. 3) was
run to determine the heating patterns. Forty (8×5) rectangular
grids were generated on the heating pattern of each tray. The
color values of the grids for each tray were directly extracted
to Microsoft Office program Excel (MS Office-2003, USA).
Similar steps were followed to collect color values from other
images of the package. Using MS Excel, a grid with lowest
color value was selected among all of the grids and detected as
the cold spot region of the microwave sterilization process.

3. Results and discussion

3.1. Computer vision color patterns

Colors of heated samples were analyzed by referencing the
developed scale in each picture package using Adobe Photo-
shop. Computer vision showed different color as a result of
different M-2 yield at each level of F0 (Fig. 4). HPLC analy-
sis revealed that the sample held at 121 ◦C for F0 = 6 min had
much higher chemical marker yield (0.089 mg/g) than a sam-
ple directly heated to 126 ◦C (0.029 mg/g) for a similar level
of F0 (Table 1). Due to a short heating duration and higher
temperature than 121 ◦C, direct heating to 126, 131 ◦C temper-
atures leads to higher F0 in the tested samples, while chemical
marker yields were all comparatively lower. This is because of
the earlier stated difference between the activation energy for
M-2 formation and that for thermal inactivation of C. botulinum
spores used in F0 calculation.

It is clear that correlation between M-2 formation and F0 are
dependent of temperature pathway which will be discussed in
details.

Our test results also showed that positions of lights around
the diffuser box had no effect on the color images captured by
the computer vision system (Fig. 5). Statistical analysis (SAS,
Institutes Inc., Cary, NC, USA) at 95% level of significance
showed no significant difference in measured color value of the
images taken at three different light positions. A separate study
was also conducted to compare the color values of the sample
analyzed right after heating and samples stored maintaining
a protocol (storage protocol: 1 h at −35 ◦C, 12 h at 5 ◦C, and
1 h again −35 ◦C). This study showed no significant difference
(P -value > 0.98) in color value for both set of samples.

3.2. Color value equivalent to gray-level value and M-2 yield

Gray-scale quantification tool was used to obtain the
color value equivalent to a gray-level value for each sample.
A representative color value along with the standard deviation
of selected ROI (Region of Interest) was obtained using IMAQ
Vision Builder. Our tests showed that chemical marker yield
of the sub-sample taken at center of the sample and that of
the mixed whole sample in the same container was not signifi-
cantly different (P -value = 0.985) (SAS, Institutes Inc., Cary,
NC, USA). To expedite the extraction procedure, a sub-sample
from the middle section of the treated sample was taken at each
level of F0 for determination of the M-2 yield using HPLC.
M-2 yields of analyzed samples were positively correlated with
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Fig. 4. Computer vision patterns for mashed potato samples heated to a set temperature (T ) or held to 121 ◦C for different F0. (a) Original sample. (b)
Computer vision patterns.

Table 1
Color values equivalent to gray-scale values and chemical marker M-2 yield for two different heating conditions, each point represents mean of two replicates

Data collected for Temperature F0 (min) M-2 yield Color value
or target (mg/g of sample) equivalent to
F0 Gray-level

Ramp up to temperature levels (◦C) 110.00 0.15 ± 0.00 0.005 ± 0.004 10.17 ± 2.48
116.00 0.53 ± 0.15 0.013 ± 0.005 29.70 ± 8.65
121.00 1.85 ± 0.03 0.021 ± 0.008 47.78 ± 7.71
126.00 6.17 ± 0.28 0.029 ± 0.001 84.69 ± 2.16
131.00 17.81 ± 3.83 0.053 ± 0.011 108.78 ± 3.13

Holding at 121 ◦C for F0 (min) 1.50 1.57 ± 0.09 0.016 ± 0.001 29.08 ± 9.55
3.00 2.98 ± 0.10 0.034 ± 0.004 78.70 ± 3.26
6.00 6.08 ± 0.01 0.089 ± 0.001 125.84 ± 2.28
9.00 9.05 ± 0.08 0.124 ± 0.008 143.54 ± 5.25

12.00 12.02 ± 0.04 0.152 ± 0.003 158.01 ± 0.04
15.00 15.05 ± 0.04 0.167 ± 0.002 184.68 ± 3.57
18.00 17.98 ± 0.04 0.201 ± 0.014 196.05 ± 2.28

the cumulative thermal lethality F0 (Fig. 6). M-2 yields of the
samples were also correlated with imagine parameter, color
value, to establish a relationship (Table 1). Results showed a
unique positive correlation between M-2 yield and color val-
ues (Fig. 7) regardless of heating pathways. This indicates that
computer visions based on the color value equivalent to gray
scale can uniquely reflect M-2 yields in thermal processes.

3.3. Color value equivalent to gray-level value and F0

The color values measured for each sample using IMAQ Vi-
sion Builder were plotted against F0 values. Two different pos-
itively correlated trends, one for samples heated by holding at
121 ◦C and another for samples directly heated to a set tem-
perature (ramp up), were obtained (Fig. 8). For each different
heating pathway, plotted result showed that each level of F0

will lead to a unique M-2 yield and color value (Figs. 6–8).
These relationships between M-2 yield vs. F0, and color value
vs. F0 are unique for a given condition of heating. Based on
these relationships, by referring to a scale, color value can be
used as a representative for the thermal lethality (F0) and chem-
ical marker (M-2) yield.

4. Validation of locations specified by computer vision

In order to validate the accuracy of the cold and the hot spot
locations determined by the computer vision method, experi-
ments were conducted in a 915 MHz single-mode pilot-scale
microwave sterilization system in two replicates. Thermo wells
that separated sealed sample from fiber-optic sensors were fit-
ted into the tray at the measured distance of cold and hot spot
locations. Each tray was filled with 200 g of mashed potato
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Fig. 5. Comparison of computer vision color patterns with mashed potato samples heated to different temperature levels for three positions (bottom, middle
and top) of lights. Number denotes the set temperature to which sample was heated. (a) Bottom. (b) Middle. (c) Top.
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Fig. 6. M-2 yield and F0 correlation with mashed potato samples heated to
different set temperature (ramp up) levels or held at 121 ◦C for different F0,
data points represent means for two replicates.

sample mixed with 1.5% D-ribose and then vacuum-sealed at
18 in of Hg vaccum. Trays were set on an Ultem support and
a proper speed was chosen to move the tray support from the
loading section to the holding section through two single-mode
microwave cavities. Water at 125 ◦C was circulated across the
tray support inside the pressurized microwave cavities at a flow
rate of 35 lpm. Fiber optic temperature sensors inserted into the
thermo wells measured temperature at the specified cold and
hot spot locations identified by computer vision method. The
experiments were conducted at a 2.67 kW microwave power
level. The measured temperature confirmed that the temperature
measured at the perceived hot spot was indeed always higher
than the cold spot for all tests, as shown by a representative
curve in Fig. 9.
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Fig. 7. Color value and M-2 yield relationship with mashed potato samples
heated to different set temperatures (ramp up) levels or held at 121 ◦C for
different F0, data points represent means for two replicates.

To further confirm the locations of the cold spots relative to
other parts of the tray, additional 13 tests were conducted. In
each of the tests, four pre-calibrated optic sensors were placed
in a sample tray during the microwave sterilization process. One
of the sensors was always inserted at the cold spot identified
by the computer vision method while the others were placed in
three different locations. Compiling all the measured tempera-
tures from the 13 tests, provided temperature profile for a total
of 40 different points (8 × 5) evenly distributed in the middle
layer of a tray. Computer vision patterns and temperature map-
ping, of middle layers, obtained using fiber optics are compared
in Fig. 10. It shows that heating pattern and cold spot location
obtained by both the methods were concordant. This indicates
that the novel computer vision method indeed reliably reveal
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Fig. 9. Validation of cold and hot spots locations specified by computer vision
method in 10 oz trays during microwave sterilization at 2.67 kW power level,
typical temperature profile from repeated tests in the middle layer of the tray.

Fig. 10. Matching of the experimental and developed method heating patterns for the middle layer of a 10 oz tray with mashed potato processed at 2.67 kW
microwave power level. (a) Heating pattern by developed computer vision method. (b) Temperature distribution measured by fiber optic probes.

the cold spots in foods and can be used to study general heating
patterns in foods after microwave sterilization processes.

5. Conclusions

The designed computer vision system provided consistent
background for the images. The developed scale can be used
to compare the heating patterns of microwave-sterilized foods
for combinations of power levels and F0. Shooting tent worked
well as an effective diffuser, and positions of lights for a fixed
setting of exposure intensity had no influence on the heating
patterns.

Color value equivalent to gray scale value was positively
correlated with chemical marker yield and cumulative thermal
lethality (F0). For a given F0, chemical marker (M-2) yield of
the samples heated directly to 126, 131 ◦C temperatures were
lower than holding the sample at 121 ◦C. Separate pathway pro-
vides different correlation between M-2 yield and F0. But cor-
relation between color values and M-2 yield are independent of
heating pathway. Based on these relationships, a computer vi-
sion method was developed to identify the cold and the hot spot
regions of a processed food sample. Validation tests confirmed
that the computer vision method based on chemical marker M-
2 yield can accurately determine the location of cold spots.
The developed knowledge base will support application of this
method for evaluation of microwave sterilization processes.

Currently this method is being used to locate the cold
spots in salmon with sauce to develop filing documents for
FDA acceptance of the 915 MHz microwave sterilization
processes.
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