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a b s t r a c t

In this paper, we study an optimization problem for a microwave/induction heating
process. The cost function is defined such that the temperature profile at the final stage
has a relative uniform distribution in the field. The control variable is the applied electric
field on the boundary. We show that there exists an optimal electric field whichminimizes
the cost function. Moreover, a necessary condition for a special case is also derived.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In modern industries, a convenient method to generate heat is to use microwave and inductive technique (see [1,2]
for examples). This method is quick and clean. Moreover, it saves water in sterilization processes for many applications
in medical sciences and industrial processes. However, there are still some challenging problems to be resolved in order
to improve the current technology. One of these problems is that the heat produced by microwaves is not uniformly
distributed in the targeted materials. This causes serious problems in sterilization processes ([3]; also see [4]). There are
several reasons for the non-uniformity of the temperature profile. One of those is that various physical parameters such as
electric permittivity, electric conductivity, and magnetic permeability may depend on the temperature. Another reason is
that the materials may have different structures which affect the heat conductivity.

To improve the uniformity of the temperature profile, one option is to select a suitable applied electric field. In this
paper, we formulate this model as an optimal control problem in which the underlying dynamics is governed by Maxwell’s
equations coupled with nonlinear heat conduction with a source generated by microwaves. The goal of the control is to
reach a relatively uniform heat profile at a specific time by controlling the applied field on the boundary of the domain.

Optimal control and controllability problems associated with partial differential equations or systems as underlying
states have been studied by many researchers. There are several classical books such as [5,6], and more recent ones such as
[7–10]. For control problems associated with Maxwell’s equations, there are several papers dealing with the controllability
from the boundary (see, for example, [11–17]). When a underlying equation or system is nonlinear, the controllability
question generally becomes much more challenging (see [18]). Instead, one often considers optimal control problems by
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selecting a control from the source or from the boundary. The literature on this subject is huge, and there is no way for
us to review them here. One fact is clear: when the underlying system is nonlinear, it is important to select a reasonably
large admissible set such that the optimal control problem has a solution. We mention [19] by Raymond and Zidani as
an example for a general semilinear parabolic equation and [20] by Fu, Yong, and Zhang as an example for a semilinear
hyperbolic equation (also see Bardos, Lebeau and Rauch [21]). On the other hand, since the underlying system considered
in this paper contains both types of equation, there are only a few results for optimal control problems associated with
nonlinear hyperbolic equations due to the complicated well-posedness question for nonlinear wave equations or systems
[22]. In this paper, we consider an optimal control problem associated with nonlinear Maxwell’s equations coupled with
a nonlinear parabolic equation (see the model in Section 2 for details). One of the difficulties in the present paper is that
Maxwell’s equations are degenerate due to the nonlinearity of the coefficients. Moreover, the nonlinear heat source often
belongs to L1 for this type of coupled systems. This causes a serious problem when one needs to prove the existence of an
optimal control. By applying some recent estimates obtained in [23,24] and techniques for elliptic–parabolic equations [22,
25], we are able to obtain a better estimate for the nonlinear heat source (see Lemma 3.1 below).With this new estimate, we
can overcome the difficulties to establish the existence result. Finally, wewould like tomention two paperswhich are closed
related to the present work. In [3], the authors studied a similar problem by selecting a control variable in the heat source.
In [4], the authors studied a food sterilization process by using conventional heating method, where the control variable is
selected from the boundary. Our present results generalize these previous ones obtained in [4,3].

This paper is organized as follows. In Section 2, for the reader’s convenience, we use a unified approach to derive the
mathematical model for microwave and induction heating. The optimal control problem is formulated, in which the control
function is the applied electric field on the boundary. In Section 3, we prove that the underlying system has a unique weak
solution for any applied electric field in a suitable admissible set. Moreover, some important estimates are derived in this
section. In Section 4, we show that there exists an optimal control. In Section 5, we derive the necessary condition for the
optimal control solution for a special case.

2. The formulation of an optimal control problem

It is well known that there is a fundamental difference between microwave heating and inductive heating [2]. In this
paper, we follow the idea from [1,2] by using a unified approach to derive the mathematical model. The advantage of this
method is that our model is suitable both for microwave heating and induction heating. The difference between the two
heating methods is characterized by physical parameters.

For the reader’s convenience, we recall Maxwell’s equations and derive themathematicalmodel. A simplified version has
already appeared in [3,23]. Suppose that a targeted substance, say, food-like material, is placed in a microwave processor
cavity, denoted by Ω ⊂ R3 with C1-boundary S = ∂Ω . Let E(x, t) and H(x, t) denote the electric and magnetic fields at
x ∈ Ω and time t . Hereafter, a bold letter represents a vector function in R3. From electromagnetic theory [26], Maxwell’s
equations inΩ can be expressed by

εEt + σE = ∇ × H,
µHt + ∇ × E = 0,
∇ · H = 0,

where Ohm’s law J = σE is used; ε,µ, and σ are the electric permittivity, magnetic permeability, and electric conductivity,
respectively.

We note that ∇ · H = 0 holds automatically as long as an initial field H(x, 0) satisfies the same condition. Due to the
high frequency of themicrowaves, the scale of the time variable in electromagnetic fields is very different from that for heat
conduction. It is common in practice to assume that the electric andmagnetic fields are time harmonic, with fixed frequency
ω. With this assumption, Maxwell’s equations can be reduced to a Helmholz type of system. Indeed, let

E(x, t) = Ê(x)eiωt , H(x, t) = Ĥ(x)eiωt ,

where i denotes the unit complex number.
From now on, we denote by E and H the time-harmonic electric and magnetic fields. Then Maxwell’s equations reduce

to the following single system for electric field E (or a similar system for H):

∇ × [γ∇ × E] + ξE = 0,

where γ =
1
µ
and ξ = ω(−ωε + iσ).

Tomodel the heat energy produced bymicrowaves or inductivewaves, one has to take into account the dissipative effect.
We follow the method in [1] to assume that the electric permittivity ε is characterized by a complex function:

ε = ε0(ε
′
− iε′′),

where ε0 is the permittivity in free space, ε′ the relative electric permittivity, and ε′′ the effective loss factor of electric
energy.
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Moreover, the magnetic permeability µ is also assumed to be

µ = µ0(µ
′
− iµ′′),

whereµ0 is the permeability in free space,µ′ represents the relative magnetic permeability, andµ′′ represents the relative
magnetic loss factor.

Experiments show that the dielectric coefficients ε′ and ε′′ strongly depend on themedium and the system temperature,
denoted by u = u(x, t) [1,2]. It follows that E satisfies the following system:

∇ × [γ (x)∇ × E] + ξ(x, u)E = 0, x ∈ Ω,

where

ξ(x, u) = −a1(x, u)+ ia2(x, u) := ω[−ωε0ε
′(x, u)+ i(σ (x, u)+ ωε0ε

′′(x, u))]

γ (x) = µ0

[
µ′

(µ′)2 + (µ′′)2
+ i

µ′′

(µ′)2 + (µ′′)2

]
.

To derive the equation of heat conduction, we need to derive the heat density generated by microwaves. There are two
types of current: displacement currents Jd = ε(iω)E and eddy currents, Je = σE, by Ohm’s law. For a dielectric material, the
displacement current dominates the current flow, while for a metallic material, the eddy current dominates the flow. We
combine the two types of material by using a unified quantity, denoted by Jtotal. The total current density can be expressed
by

Jtotal = σE + ε0(ε
′
− iε′′)iωE =

1
ω

[a2(x, u)− ia1(x, u)]E.

For microwave heating and inductive heating, the time-average power dissipated in a material per unit volume is given
by [1, Chapter 3]

Q (x, t) =
1
2
Re[E · J∗total] =

1
2ω

a2(x, u)|E|2,

where J∗total represents the complex conjugate of Jtotal and a2(x, u) = σ(x, u)+ ωε0ε
′′(x, u).

With the above local heat source, by using Fourier’s law and the conservation of energy, one can easily see that the
temperature u(x, t) satisfies a nonlinear heat equation with an internal source generated by microwaves:

ρcut − ∇[k(x, u)∇u] =
1
2ω

a2(x, u)|E|2, (x, t) ∈ QT ,

where QT = Ω × (0, T ], ρ is the density, c the specific heat, and k(x, u) the heat conductivity.
We sum up the above derivation and normalize certain physical constants to obtain the following mathematical model:

∇ × [γ (x)∇ × E] + [−a1(x, u)+ ia2(x, u)]E = 0, (x, t) ∈ QT , (2.1)

ut − ∇[k(x, u)∇u] =
1
2
a2(x, u)|E|2, (x, t) ∈ QT , (2.2)

n × E = n × G(x), (x, t) ∈ ST = ∂Ω × (0, T ], (2.3)
un(x, t) = 0, (x, t) ∈ ST (2.4)
u(x, 0) = u0(x), x ∈ Ω, (2.5)

where n is the outward unit normal on S = ∂Ω , un = ∇u · n is the normal derivative on S, and G(x) is the time-harmonic
electric field generated by external optoelectronic devices which is considered as a control variable.

Optimal control problem (P): Given T > 0 and a desired temperature uT (x) ∈ L2(Ω) at time T , find an optimal control
G0

∈ Uad such that the cost functional,

J(G; E, u) :=

∫
Ω

|u(x, T )− uT (x)|2dx +
λ

2

∫
∂Ω

|G(x)|2ds, (2.6)

reaches its minimum at (u0, E0) for all G ∈ Uad, where (E, u) and (E0, u0) are weak solutions of the coupled system (2.1)–
(2.5) corresponding to G and G0, respectively. Uad is an admissible control set to be specified below. The number λ > 0 is a
typical regularization parameter.

Remark 2.1. In the above model derivation, the electric field E is assumed to be time harmonic. However, it still depends
on time variable from the heat conduction, since the time scale for electric waves is much faster than the time variable in
the heat conduction.
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3. Estimates of solution for the underlying system

Throughout this paper,Ω is always assumed to be a bounded and simply connected domain in R3, and the boundary of
Ω is C1-continuous.

We recall some standard Banach spaces. For convenience, a product space Bn is often simply denoted by B. Let

H(curl,Ω) = {G(x) ∈ L2(Ω) : ∇ × G ∈ L2(Ω)},
H0(curl,Ω) = {G(x) ∈ L2(Ω) : ∇ × G ∈ L2(Ω),n × G = 0 on ∂Ω}.

H(div,Ω) = {G(x) ∈ L2(Ω) : ∇ · G ∈ L2(Ω)}.

H0(curl,Ω) and H(curl,Ω) are Hilbert spaces equipped with inner product

⟨G, F⟩ =

∫
Ω

[(∇ × G)× (∇ × F∗)+ G · F∗
]dx,

where F∗ represents the complex conjugate of F. H1(Ω) is the usual Sobolev space (see [25]).
The admissible control set is

Uad = {G ∈ L2(S) : ‖G‖L2(S) ≤ A0 < ∞},

where A0 is a constant.
We impose some basic assumptions which ensure the well-posedness of the underlying system.

H(1) Assume that u0(x) and uT (x) ∈ L2(Ω) and nonnegative. The function k(x, u) is measurable in x, uniformly Lipschitz
continuous with respect to u, and 0 < k0 ≤ k(x, u) ≤ k1, for positive constants k0 and k1.

H(2) (a) Assume that the functions a1(x, u) and a2(x, u) are real, measurable, and bounded functions and uniformly
Lipschitz continuous with respect to the u-variable. Moreover,

0 < a0 ≤ a1(x, u), a2(x, u) ≤ b0
for some constants a0 > 0, b0 > 0.

(b) The function γ (x) =
1
µ(x) := γ1(x)+ iγ2(x) is assumed to be a bounded complex function, and γ1(x), γ2(x) ≥ γ0 >

0 for some constant γ0 > 0.
(c) The boundary function G(x) is defined on S with an extension such that G(x) ∈ H(curl,Ω)with extended function

Ḡ(x) satisfies
‖Ḡ‖H(curl,Ω) ≤ c0‖G‖L2(S),

where c0 is a constant that depends only onΩ .
For convenience, we shall denote the extended function Ḡ(x) by G(x)with G(x) ∈ H(curl,Ω).

Set

W [0, T ] = {u ∈ L2(0, T ;H1(Ω)), ut ∈ L2(0, T ;H−1(Ω))}

with the norm

‖u‖2
W [0,T ]

= ‖u‖2
L2(0,T ;H1(Ω))

+ ‖ut‖
2
L2(0,T ;H−1(Ω))

.

ThenW [0, T ] is a reflexive and separable Banach space. The embeddingW [0, T ] ↩→ C([0, T ]; L2(Ω)) is continuous and the
mapping fromW [0, T ] ↩→ L2(0, T ; L2(Ω)) is compact (see [27]).

Due to the hypotheses H(1)–H(2), for any given G(x) ∈ Uad, the controlled system (2.1)–(2.5) has a unique weak solution,
which we state as follows. The proof can be found in Theorem 4.3 of [24].

Theorem 3.1. Under the assumptions H(1) and H(2), the coupled system (2.1)–(2.5) has one unique weak solution (E, u) with

E(x, t)− G(x) ∈ L∞(0, T ;H0(curl,Ω)) and u(x, t) ∈ W [0, T ].

In order to prove the existence of a minimum for the cost functional J(G; E, u), the following estimates for solutions of
problem (2.1)–(2.5) are essential for the proof of the main result.

Lemma 3.1. There are constants C1 > 0, C2, and C3 > 0 which depend on known data such that∫
Ω

|∇ × E|2dx +

∫
Ω

|E|6dx ≤ C1‖G‖
2
L2(S), (3.1)∫

Ω

[|∇ · (a1E)|2 + |∇(a2E)|2]dx ≤ C2, (3.2)∫
Ω

|u|2dx +

∫ T

0

∫
Ω

|∇u|2dxdt ≤ C3, (3.3)

where C1, C2, and C3 are constants which depend only on known data.
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Proof. The main idea of the proof follows from [24].
Step 1: Derivation for the first part of estimate (3.1).

We recall by assumption H(2) that G(x) can be extended toΩ with

‖G‖H(curl,Ω) ≤ c0‖G‖L2(S).

To derive the estimate, we take the inner product by E∗
− G∗ with system (2.1) to obtain∫

Ω

γ (x)|∇ × E|2dx +

∫
Ω

[−a1(x, u)+ ia2(x, u)]|E|2dx

=

∫
Ω

γ (x)(∇ × E) · (∇ × G∗)dx +

∫
Ω

[−a1(x, u)+ ia2(x, u)]E · G∗dx

:= I1 + I2,

where E∗ and G∗ represent the complex conjugate of E and G, respectively.
Taking the imaginary part first, and then the real part from the above identity, and using assumption H(2), we have

γ0

∫
Ω

|∇ × E|2dx ≤ b0

∫
Ω

|E|2dx + |Re(I1 + I2)|. (3.4)

γ0

∫
Ω

|∇ × E|2dx + a0

∫
Ω

|E|2dx ≤ |Im(I1 + I2)|. (3.5)

It follows from the Cauchy–Schwarz inequality with small parameters δ1 > 0 and δ2 > 0 that

|I1| ≤ δ1

∫
Ω

|∇ × E|2dx + C(δ1)
∫
Ω

|∇ × G|
2dx

|I2| ≤ δ2

∫
Ω

|E|2dx + C(δ2)
∫
Ω

|G|
2dx.

From (3.5), we choose δ1 sufficiently small to obtain

(a0 − δ1)

∫
Ω

|E|2dx ≤ δ2

∫
Ω

|∇ × E|2dx + C(δ1, δ2)
∫
Ω

[|G|
2
+ |∇ × G|

2
]dx. (3.6)

Substitute (3.6) to (3.4) and choose δ2 sufficiently small to get∫
Ω

|∇ × E|2dx ≤ C
∫

Ω

|∇ × G|
2dx +

∫
Ω

|G|
2dx


.

It follows from the Extension Theorem [22, p. 254] that∫
Ω

|∇ × E|2dx ≤ C
∫

Ω

[|∇ × G|
2
+ |G|

2
]dx


≤ C1‖G‖

2
L2(S),

where C1 > 0 depends only on known data in H(1)–H(2) andΩ .
Step 2: Derivation of the estimate (3.2).

We may assume that E is smooth with respect to spatial variables. Otherwise, we just use smooth approximation to
derive the estimate and then take the limit. Now, by taking divergence directly to Eq. (2.1),

∇{∇ × (γ (x)∇ × E)+ (−a1(x, u)+ ia2(x, u))E} = 0,

we use the fact the div(curlF) = 0 to obtain

∇ ·

[−a1(x, u)+ a2(x, u)]E


= 0, x ∈ Ω.

It follows that∫
Ω

|{∇ · ([−a1(x, u)+ ia2(x, u)]E)}|2dx = 0.

Consequently, there exists a constant C2 such that∫
Ω

[|∇ · (a1E)|2 + |∇ · (a2E)|2]dx ≤ C2.

Step 3: Derivation for the second part of the estimate (3.1).
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Since a1 ≥ a0 > 0, we can now use the decomposition property [28] to see that E(x) ∈ H1(Ω) and

‖E‖H1(Ω) ≤ C
[∫

Ω

|E|2|∇ × E|2 + |∇(a1E)|2dx +

∫
S
|G|

2ds
]
.

By applying Sobolev’s embedding with the dimension N = 3, we see that

‖E‖L6(Ω) ≤ C + C
∫
S
|G|

2ds,

where C depends only on C1 and C2 in Steps 1 and 2 and the domainΩ .

Step 4: Derivation of the estimate (3.3).
Since the right-hand side of Eq. (2.2) is in L∞(0, T ; L3(Ω)), by using the standard energy estimate, we see that

d
dt

∫
Ω

u2dx +

∫
Ω

|∇u|2dx ≤ C
∫
Ω

ua2(x, u)|E|2dx

≤ C
∫
Ω

u2dx + C
∫
Ω

|E|4dx,

where C depends only on the constants in H(1)–H(2) and those in the estimates (1) and (2). Finally, Gronwall’s inequality
yields the desired estimate (3.3). �

4. Existence of an optimal control

In this section, we will prove the existence of an optimal control for problem (P). We define a feasible control set as
follows.

Aad = {(G, E, u) ∈ L2(S)× H(curl,Ω)× W [0, T ] :

(E, u)is a solution of system (2.1)–(2.5) corresponding to G ∈ Uad}.

Theorem 4.1. Suppose that the assumptions H(1) and H(2) hold. Then there exists an optimal control for problem (P).

Proof. From Theorem 3.1, we know that, for every G ∈ Uad, there exists a unique solution (E, u) to system (2.1)–(2.5).
Assume that

inf
G∈Uad

J(G; E, u) = J∗ < +∞.

Let {Gm} ⊂ Uad be a minimizing sequence such that

lim
m→+∞

J(Gm; Em, um) = J∗,

where (Em, um) is the solution of system (2.1)–(2.5) corresponding to the control Gm form = 1, 2, . . . . That is,

∇ × [γ (x)∇ × Em] + [−a1(x, um)+ ia2(x, um)]Em = 0, (x, t) ∈ QT , (4.1)

(um)t − ∇[k(x, um)∇um] =
1
2
a2(x, um)|Em|

2, (x, t) ∈ QT , (4.2)

n × Em(x) = n × Gm(x), x ∈ ST , (4.3)
(um)n(x, t) = 0, (x, t) ∈ ST , (4.4)
um(x, 0) = u0(x), x ∈ Ω. (4.5)

It follows from the estimates in Lemma 3.1 and the weak compactness of H(curl,Ω) that there exists a subsequence of
{Gm(x)}, again denoted by {Gm(x)}, such that

Gm(x) −→ G0(x) weakly in H(curl,Ω)

as m → +∞. Moreover, by the Mazur lemma, we know that G0(x) ∈ Uad.
From Lemma 3.1, we know that {Em} is bounded in L∞(0, T ;H(curl,Ω))


L6(QT ), {um} is bounded in W [0, T ], and

max0≤t≤T ‖um(t)‖L2(Ω) ≤ C for some constant C > 0. Noting that the embedding operators fromH(curl, diva,Ω) ↩→ L2(Ω)
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and from W [0, T ] ↩→ L2(0, T ; L2(Ω)) are compact, we conclude that there exists a subsequence of {Em, um}, relabelled as
{Em um} again, and E0

∈ H(curl,Ω)


L∞(0, T ; L6(Ω)), u0
∈ W [0, T ], such that

Em −→ E0 weakly in H(curl,Ω) (4.6)

∇um −→ ∇u0 weakly in L2(0, T ;H−1(Ω)) (4.7)

Em −→ E0 strongly in L2(Ω) (4.8)

um −→ u0 strongly in L2(0, T ; L2(Ω)) (4.9)

um(x, t) −→ u0(x, t) weakly in L2(Ω), for any t ∈ [0, T ] (4.10)

asm → +∞.
From the strong convergence of L2-space, we can further select a subsequence such that

Em(x, t) −→ E0(x, t) a.e. (x, t) ∈ QT , (4.11)

um(x, t) −→ u0(x, t) for any t ∈ [0, T ], a.e. x ∈ Ω. (4.12)

Note that∫ T

0

∫
Ω

|[a2(x, um)|Em|
2
− a2(x, u0)|E0

|
2
]|

2dxdt

≤

∫ T

0

∫
Ω

|[a2(|Em|
2
− |E0

|
2)]|2dxdt +

∫ T

0

∫
Ω

|[(a2(x, um)− a2(x, u0))|E0
|
2
]|

2dxdt

≤ A2
0

∫ T

0

∫
Ω

|a2(x, um)|
2(|Em|

2
− |E0

|
2)2dxdt +

∫ T

0

∫
Ω

|[(a2(x, um)− a2(x, u0))|E0
|
2
]|

2dxdt,

where b0 is the upper bound of a2(x, u).
Since a2 is bounded, by (4.5), (4.6), and the bound ofEm in L6(Ω), we obtain by using the dominance convergence theorem

that ∫ T

0

∫
Ω

|(|Em|
2
− |E0

|
2)|2dxdt −→ 0

and ∫ T

0

∫
Ω

|(a2(x, um)− a2(x, u0))|E0
|
2
|
2dxdt −→ 0,

asm → +∞. Hence,∫ T

0

∫
Ω

|a2(x, um)|Em |
2
−a2(x, u0)|E0

|
2
|
2dxdt −→ 0

asm → +∞. That is,

a2(x, um)|Em|
2

−→ a2(x, u0)|E|2, strongly in L2(0, T ; L2(Ω)). (4.13)

Multiplying Eq. (4.2) by um(x, t)− u0(x, t) and then taking integration over QT , we obtain∫ T

0

∫
Ω

(um)t · (um − u0)dxdt −

∫ T

0

∫
Ω

∇(k(um, x)∇um) · (um − u0)dxdt

=

∫ T

0

∫
Ω

1
2
a2(x, um)|Em|

2
· (um − u0)dxdt.

By using integration by parts, then taking the limit and using (4.9) and (4.13), one can see that

lim
m→+∞

∫ T

0

∫
Ω

k(x, um)|∇um|
2

=

∫ T

0

∫
Ω

k(x, u0)|∇u0
|
2dxdt.

One concludes that u0 satisfies the following equation in a weak sense:

u0
t − ∇(k(x, u0)∇u0) =

1
2
a2(x, u0)|E0

|
2.

By performing integration by parts and taking the limit for all test functions

ψ ∈ C∞(0, T ), ξ ∈ H1(Ω),
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we have

lim
m+→

[∫
Ω

um(x, T )ψ(T )ξdx −

∫
Ω

um(x, 0)ψ(0)ξdx
]

=

∫
Ω

u0(x, T )ψ(T )ξdx −

∫
Ω

u0(x, 0)ψ(0)ξdx.

Taking ψ(T ) = 0 and ψ(0) = 1, we obtain∫
Ω

u0(x)ξdx =

∫
Ω

u0(x, 0)ξdx

for arbitrary ξ ∈ H1(Ω). Hence

u0(x, 0) = u0(x) in L2(Ω).

Now, ∀8 ∈ H0(curl,Ω),∫
Ω

(γ (x)∇ × Em) · (∇ × 8)dx +

∫
Ω

(−a1(x, um)+ ia2(x, um))Em · 8dx = 0.

That is,∫
Ω

(γ (x)∇ × Em) · (∇ × 8)dx +

∫
Ω

(−a1(x, u)+ ia2(x, u))Em · 8dx

=

∫
Ω

[(a1(x, u)− a1(x, um)+ i(a2(x, um)− a2(x, u)))]Em · 8dx. (4.14)

By the uniformly Lipschitz condition in H(2), one can easily see that∫
Ω

(a1(x, u0)− a1(x, um)+ i(a2(x, u0)− a2(x, um)))Em · 8dx


≤

∫
Ω

|(a1(x, u0)− a1(x, um)+ i(a2(x, um)− a2(x, u0)))|2dx
1/2

·

∫
Ω

|Em|
2
|8|

2dx
1/2

≤ L


∫

Ω

um(x, t)− u0(x, t) |2 dx
1/2 ∫

Ω

|Em|
2
|8|

2dx
1/2


−→ 0, asm → ∞,

where L > 0 is a constant which depends on the Lipschitz constants for a1(x, u0) and a2(x, u0).
By taking m → +∞ in (4.14) and using (4.8), we obtain that E0 is a weak solution of (2.1)–(2.5) corresponding to G0.

Therefore

(G0, E0, u0) ∈ Aad

and

J∗ = lim
m→+∞

J(Gm, Em, um)

= lim
m→+∞

[∫
Ω

|um(x, T )− uT (x)|2dx +
λ

2

∫
S
|Gm|

2dx
]

≥

∫
Ω

|u0(x, T )− uT (x)|2dx +
λ

2

∫
S
|G0

|
2dx

= J(G0, E0, u0) ≥ J∗.

This shows that J attains its minimum at (G0
; E0, u0) ∈ Aad. �

5. Necessary conditions for an optimal solution

In deriving the necessary conditions, one often needs additional regularity for the weak solution of system (2.1)–(2.5).
For technical reasons we have to focus on a special case by assuming that the electric field E(x, t) lies in one direction,
i.e. E(x, t) = {0, 0, w(x, t)} with x = (x1, x2) ∈ R2. For this case, we can derive more regularity which is needed in
the derivation of the necessary conditions. The general case relies on the regularity of the weak solution, which is quite
complicated, and will be carried out in a separate paper.
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With this assumption, the Maxwell system in Section 2 can be written as a scalar elliptic equation for w(x, t). Then the
underlying system becomes the following coupled elliptic–parabolic system (see [24]):

−∇[γ (x)∇w] + (−a1(x, u)+ ia2(x, u))w = 0, (x, t) ∈ QT , (5.1)

ut − ∇[k(x, u)∇u] =
1
2
a2(x, u)|w|

2, (x, t) ∈ QT , (5.2)

w(x, t) = g(x), (x, t) ∈ ST , (5.3)
un(x, t) = 0, (x, t) ∈ ST , (5.4)
u(x, 0) = u0(x), x ∈ Ω. (5.5)

We recall the optimal control problem for the current case. Given T > 0 and a desired temperature uT (·) ∈ L2(Ω) at
t = T , find an optimal control g0(x) ∈ Uad associated with solution (w0, u0) of (5.1)–(5.5) such that

J(g0
;w0, u0) ≤ J(g;w, u) :=

1
2

∫
Ω

|u(x, T )− uT (x)|2dx +
λ

2

∫
∂Ω

|g|2ds (5.6)

for all g ∈ Uad, where (w, u) is a solution to the coupled system (5.1)–(5.5). We also need to modify the admissible set to
allow more regularity for the solution. Let the admissible control set Uad = {g ∈ L∞(S) : ‖g‖L∞(S) ≤ g0}.

H(5.1) (a) Assume that γ (x) is of class Cα(Ω). There exist positive constants γ0 and γ1 such that
0 < γ0 ≤ Re(γ (x)), Im(γ (x)) ≤ γ1 < ∞.

(b) The function k(x, u) is Hölder continuous with respect to x and Lipschitz continuous with respect to the u-
variable. Moreover, there exist two positive constants k0 and k1 such that

0 < k0 ≤ k(x, u) ≤ k1 < ∞.
(c) The functions ξ(x, u) := −a1(x, u)+ ia2(x, u) ∈ Cα,1+α(Ω × R), and there exists a constant A0 such that

|ξ(x, u)| ≤ A0.
H(5.2) u0(x) ∈ Cα(Ω̄) and u0(x) ≥ 0.

Theorem 5.1. Under assumptionsH(5.1)–H(5.2), problem (5.1)–(5.5) has a uniqueweak solution (w, u) ∈ H1(Ω)


L∞(QT )×

L2(0, T ;H1(Ω))Cα,
α
2 (Q̄T ) in QT for any T > 0. Moreover,

‖w‖H1(Ω) + ‖w‖L∞(Ω) ≤ C1,

‖u‖
Cα,

α
2 (Q̄T )

+ ‖u‖L2(0,T ;H1(Ω)) ≤ C2,

where C1 and C2 depend only on known data.

Proof. The proof follows the same steps as that for Theorem 3.1 (also see Theorem 5.1 of [24]). Here we only show that
w(x, t) is uniformly bounded and that u is Hölder continuous in Q̄T . Let

M = sup
x∈S

|g(x)|.

We define

w+(x, t) = Re(w+)+ iIm(w+) := (w − M)+,

where

Re(w+) := (Re(w)− M)+, Im(w+) := (Im(w)− M)+.

By taking the real part of Eq. (5.1) and then multiplying by Re(w+), we have∫
Ω

γ (x)|∇w+
|
2dx +

∫
Ω

[−a1(x, u)]Im(w)Re(w+)dx = 0.

Similarly, we have a similar equality after taking the imaginary part of Eq. (5.1).
Since a1(x, u) and a2(x, u) are bounded and Re(γ (x)) ≥ γ0, we see that∫

Ω

|∇w+
|
2dx ≤ C

∫
Ω

|w+
|
2dx.

By using standard Moser iteration, we see thatw+
= 0 inΩ for all t ∈ [0, T ]. It follows that

sup
{0≤t≤T }

‖w‖L∞(Ω) ≤ M.

Now, sincew is bounded, the right-hand side of Eq. (5.2) is uniformly bounded. Since k(x, u) is boundedwith a positive lower
bound, it follows that u(x, t) is Hölder continuous in Q̄T by the classical theory for parabolic equations, and the estimate for
u(x, t) holds (see [25]). �
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To obtain the necessary conditions for the optimal control problem,we differentiate the objective functional with respect
to the control variable. Since the objective functional depends on u, which is coupled with w through the coupled system
(5.1)–(5.2), we have to differentiate u andw with respect to control g .

Theorem 5.2. Under assumptions H(5.1)–H(5.2), the mapping g → (w, u) is differentiable in the following sense:

Wε(x, t) :=
w(g + εh)− w(g)

ε
−→ W , weakly-* in L∞(0, T ;H1(Ω)), (5.7)

Uε(x, t) :=
u(g + εh)− u(g)

ε
−→ U(x, t), weakly in W [0, T ], (5.8)

for any g, h ∈ Uad such that g + εh ∈ Uad for small ε. W ∈ W0[0, T ] and U ∈ H1(0, T ;H(curl,Ω)) satisfy

Ut − ∇[k(x, u)∇U] = ∇[(ku(x, u)∇u)U] +
1
2
(a2)u(x, u)|w|

2U + a2(x, u)wW , in QT , (5.9)

∇[γ (x)∇W ] + [−a1(x, u)+ ia2(x, u)]W = [(a1)u(x, u)− i(a2)u(x, u)]wU, in QT , (5.10)

Un(x, t) = 0, in ST (5.11)
W (x, t) = h(x), in ST , (5.12)
U(x, 0) = 0 inΩ, (5.13)

where we denote by u = u(g) andw = w(g) the solution of (5.1)–(5.5) corresponding to g(x).

Proof. Now we also denote by uε = u(gε), wε = w(gε) the solution of (5.1)–(5.5) corresponding to gε := g + εh for any
h ∈ Uad. We present the proof in the following steps.
Step 1: There exist constants C1 and C2 such that∫

Ω

[|∇Wε|
2
+ |Wε|

2
]dx ≤ C1,

sup
0≤t≤T

∫
Ω

|Uε|2dx +

∫ ∫
QT

|∇Uε|2dxdt ≤ C2.

Indeed, since (wε, uε) and (w, u) are solutions of system (5.1)–(5.5) corresponding to gε and g , respectively, we have

−∇[γ (x)∇Wε] + (−a1(x, uε)+ ia2(x, uε))Wε

=
1
ε
[(−a1(x, uε)+ a1(x, u))+ i(a2(x, uε)− a2(x, u))]w, (x, t) ∈ QT , (5.14)

Uεt − ∇[k(x, uε)∇Uε] = ∇

[
k(x, uε)− k(x, u)

ε


∇u

]
+

1
2ε

a2(x, uε)|wε|2 −
1
2ε

a2(x, u)|w|
2, (x, t) ∈ QT , (5.15)

Wε(x, t) = h(x), (x, t) ∈ ST , (5.16)
Uεn(x, t) = 0, (x, t) ∈ ST (5.17)
Uε(x, 0) = 0, x ∈ Ω. (5.18)

Multiplying Eq. (5.14) by (Wε − h)∗ and integrating overΩ , we find that∫
Ω

γ (x)|∇Wε|
2dx +

∫
Ω

[−a1(x, uε)+ ia2(x, uε)]|Wε|
2dx = I1 + I2 + I3,

where

I1 :=

∫
Ω

γ (x)(∇Wε)
∗
· (∇h)dx;

I2 :=

∫
Ω

[−a1(x, uε)+ ia2(x, uε)]Wε · h∗dx;

I3 :=

∫
Ω

1
ε
[(−a1(x, uε)+ a1(x, u))+ i(a2(x, uε)− a2(x, u))]w · (Wε − h)∗dx.

Using the same energy method as in Lemma 3.1, we obtain∫
Ω

|∇Wε|
2dx +

∫
Ω

|Wε|
2dx ≤ C + C

∫
Ω

|a1(x, uε)− a1(x, u)|2 + |a2(x, uε)− a2(x, u)|2

ε2
|w|

2dx.
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By the Lipschitz condition for a1 and a2 in assumption H(5.2) and the fact thatw ∈ L∞(QT ),∫
Ω

[|∇Wε|
2dx + |Wε|

2
]dx ≤ C + C1

∫
Ω

|Uε|2dx. (5.19)

Similarly, multiplying Eq. (5.15) by Uε and integrating overΩ , after some routine calculation we obtain

d
dt

∫
Ω

|Uε|2dx +

∫
Ω

|∇Uε|2dx ≤ C2

∫
Ω

|Uε|2dx + C3

∫
Ω

|Wε|
2dx (5.20)

for some constants C2 > 0 and C3 > 0 which depend only on known data, but not on ε.
We use the estimate (5.19) in (5.20) to obtain

d
dt

∫
Ω

|Uε|2dx +

∫
Ω

|∇Uε|2dx ≤ C + C2

∫
Ω

|Uε|2dx.

Gronwall’s inequality implies that

sup
0≤t≤T

‖Uε‖2
L2(Ω) ≤ C (5.21)

for some constant C > 0 which depends only on known data, but not on ε.
Now we use the estimate (5.22) in (5.19) to obtain

max
0≤t≤T

‖Uε‖2
L2(Ω) +

∫ T

0

∫
Ω

|∇Uε||2dxdt ≤ C4, (5.22)∫
Ω

[|∇Wε|
2
+ |Wε|

2
]dx ≤ C5 (5.23)

for some constants C4 > 0 and C5 > 0 which depend only on known data, but not on ε.

Step 2. Nowwe are ready to derive system (5.9)–(5.12). The estimates (5.23) and (5.24) imply that there exists a subsequence
of ε → 0 and there exist U ∈ W [0, T ] andW ∈ H1(Ω) such that

Uε =
uε − u
ε

−→ U, weakly inW [0, T ];

Wε =
wε − w

ε
−→ W , weakly in H1(Ω);

Uε −→ U, strongly in L2(QT );

Wε −→ W , strongly in L∞(0, T ; L2(Ω))

as ε → 0. Furthermore, by selecting a subsequence if necessary, for a.e. t ∈ [0, T ],

Uε −→ U(x, t), a.e., x ∈ Ω; (5.24)
Wε −→ W (x, t), a.e., x ∈ Ω (5.25)

as ε → 0.
By definitions of weak solutions for system (5.1)–(5.5) (see [24]) and (5.14), (5.15), we have∫

Ω

γ (x)∇Wε∇vdx +

∫
Ω

(−a1(x, uε)+ ia2(x, uε))Wεvdx

=
1
ε

∫
Ω

[−a1(x, uε)+ a1(x, u)+ i(a2(x, uε)− a2(x, u))]wvdx, (5.26)

for all v ∈ H1
0 (Ω), and

−

∫ T

0

∫
Ω

Uεφtdxdt +

∫ T

0

∫
Ω

k(x, uε)∇Uε · ∇φdxdt = −

∫ T

0

∫
Ω

[
k(x, uε)− k(x, u)

ε

]
∇u · ∇φdxdt

+
1
2ε

∫ T

0

∫
Ω

(a2(x, uε)|wε|2 − a2(x, u)|w|
2)φdxdt, (5.27)

for all φ ∈ W [0, T ] with φ(x, T ) = 0.
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On the one hand, the terms on the left-hand side of (5.26) can be shown to converge to the limit function by weak
compactness. On the other hand, we use the mean-value theorem to see that each term in the right-hand side of (5.26) can
be written as follows:∫

Ω


−a1(x, uε)+ a1(x, u)

ε


wvdx →

∫
Ω

(a1)u(x, u)Uvwdx;∫
Ω


a2(x, uε)− a2(x, u)

ε


wdx →

∫
Ω

(a2)u(x, u)Uvwdx.

The terms on the left-hand side of (5.27) can be shown to converge by weak compactness too. The terms on the right-hand
side of (5.27) can be shown similarly.∫ T

0

∫
Ω

k(x, uε)− k(x, u)
ε

∇u∇φdx −→

∫ T

0

∫
Ω

ku(x, u)U∇u · ∇φdx.

1
2ε

∫ T

0

∫
Ω

(a2(x, uε)|wε|2 − a2(x, u)|w|
2)φdxdt

=
1
2ε

∫ T

0

∫
Ω

(a2(x, uε)(|wε|2 − |w|
2)φdxdt +

1
2ε

∫ T

0

∫
Ω

(a2(x, uε)− a2(x, u))|w|
2)φdxdt

→
1
2

∫ T

0

∫
Ω

(a2(x, u)u)U|w|
2φdxdt

as ε → 0. That is, U(x, t) and W (x, t) satisfy (5.9) and (5.10). The rest of the initial and boundary conditions can be shown
by choosing suitable test functions by the classical method. �

Theorem 5.3. Suppose that assumptions H(5.1)–H(5.2) hold. If g0
∈ Uad is an optimal control with the corresponding states

(w0, u0), then there exist (p, q) ∈ W [0, T ] × H(0, T ;H1(Ω)) such that

−∇[γ (x)∇w0
] + (−a01 + ia02)w

0
= 0, (x, t) ∈ QT , (5.28)

u0
t − ∇[k(x, u0)∇u0

] =
1
2
a02|w

0
|
2, (x, t) ∈ QT , (5.29)

w0(x, t) = g0(x), (x, t) ∈ ST , (5.30)

u0
n(x, t) = 0, (x, t) ∈ ST , (5.31)

u0(x, 0) = u0(x), x ∈ Ω, (5.32)

the adjoint system

pt − ∇[k(x, u)∇p] =
1
2
(a02)u|w

0
|
2p + (−(a01)u + i(a02)u)w

0q, in QT , (5.33)

∇(γ (x)∇q)+ [(−a01 + ia02)q − a02]w
0p = 0, in QT , (5.34)

pn(x, t) = 0, (x, t) ∈ ST (5.35)
q(x, t) = 0, (x, t) ∈ ST , (5.36)

p(x, T ) = u0(x, T )− uT (x), x ∈ Ω, (5.37)

where a01 = a1(x, u0) and a02 = a2(x, u0). The following inequality is satisfied.∫ T

0

∫
S
γ (x)q + λg0(g − g0)dsdt ≥ 0, ∀g ∈ Uad. (5.38)

Proof. Similar to system (5.1)–(5.5), since w0, (a01)u, (a
0
2) are bounded, one can easily show that there exists a unique

solution for the adjoint system. The rest of the theorem is similar to the standard calculation for a single elliptic or parabolic
equation (see [10]). We skip the details here. �
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