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Abstract

Thermal death kinetic parameters of fifth-instar codling moths (Cydia pomonella (L.)) and the effect of
three heating rates (1°Cmin~', 10°Cmin~"', and 18°Cmin~") on larval mortality were determined by a
heating block system. The insects were heated to four temperatures (46°C, 48°C, 50°C, and 52°C) held for
predetermined periods followed by 24 h storage at 4°C before mortality evaluation. Thermal death kinetics
for fifth-instar codling moths followed a 0.5th order of kinetic reaction. Minimum time required to achieve
100% mortality of a given population decreased with temperature in a semi-logarithmic manner. No larval
survival was observed in samples of 600 insects after exposure to 46°C, 48°C, 50°C, and 52°C for 50, 15, 5,
and 2 min, respectively. Activation energy for thermal kill of fifth-instar codling moths at the heating rate of
18°Cmin~" was estimated to be about 472kJ mol~'. The lethal time accumulated during the ramp period
was about 1.8, 0.2, and 0.1 min for the heating rates of 1°C min~!, 10°Cmin~!, and 18°Cmin~!,
respectively. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Interest in using heat treatments to provide quarantine security against pests in fresh and stored
agricultural commodities has increased in the wake of regulatory actions over the use of
pesticides. Concerns about pesticide effects on humans and the environment and implementation
of the US Food Protection Act of 1996 will further limit use and availability of some widely used
chemical fumigants, especially methyl bromide, against codling moth in fruits and nuts
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(UNEP, 1995). An understanding of intrinsic mortality parameters and relationships between
applied heat and its cumulative effect on both pest and commodity is necessary for determining
the suitability and effectiveness of an alternative heat treatment method.

Infesting pests differ very widely in tolerance to heat treatments. Thus, knowledge of the
minimum required thermal energy to control infesting insects over a relatively large range of
temperatures would provide flexibility for the design of suitable and effective thermal quarantine
processes. Several researchers have reported heat resistance of codling moth instars (Yokoyama
et al., 1991; Neven, 1994; Neven and Rehfield, 1995; Neven and Mitcham, 1996; Ikediala et al.,
1999). Jang (1991) observed that much of the research on the application of heat treatments to
obtain quarantine security has not been systematic. For example, different experimental and heat
application methods have been used to assess the thermal resistance of codling moths, and
reported information for codling moth or other insects is often confounded by the heat transfer
phenomenon and the heat application method employed.

Heating rate is believed to have a significant effect on insect metabolism and physiological
adjustment to the heat treatment (Evans, 1986; Neven, 1998a,b). Neven (1998a) reported that
codling moth larvae might experience thermal conditioning and acclimation to the heat at heating
rates between 0.13°C min~' and 0.2°C min~'. Consequently, a longer holding time is required at a
final temperature in order to achieve the same mortality after a slower heating rate. For
conventional heating, the heating rates in the interior of commodities ranged between
0.05°Cmin~' and 2°Cmin ', depending on heating methods, type and size of commodity, and
the end temperature (Wang et al., 2001b). In addition, the heating rate at the interior of a
commodity decreases with time under a constant treatment condition due to decreasing
temperature difference between the heating medium and the fruit. As a result, conventional heat
treatments typically take long times to achieve required security against insects. Most insects may
have adequate time to adapt to the heat and increase thermal resistance (Waddell et al., 2000).

Fast heating methods (10-20°Cmin~' heat rates) based on radio frequency (RF) and
microwave energy have been proposed to control insect pests in commodities to replace chemical
fumigation (Nelson and Payne, 1982; Ikediala et al., 1999, 2001; Tang et al., 2000; Wang et al.,
2001a). Recently, Ikediala et al. (2002) and Wang et al. (2001a) reported thermal treatment
methods using 27 MHz RF energy to control codling moths in cherries and walnuts without
significantly reducing product quality. Therefore, there is a need to study the effect of all possible
heating rates on the thermal death kinetics of insects.

The objectives in this research were to study the thermal death time (TDT) kinetics of fifth-
instar codling moths and to determine the effect of heating rates on mortality of this insect pest.

2. Materials and methods

2.1. Heating block system

A computer-controlled heating block system which provided heating rates from 0.1°Cmin~"' to
20°Cmin~"' was developed at Washington State University, Pullman, WA for studying thermal
death kinetics of insect pests. Details of this heating system have been described in Ikediala et al.
(2000) and the improved version in Wang et al. (2002). The death rate kinetics and the effect of
heating rates on thermal mortality of insects were investigated using this heating system.
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2.2. Heat treatment of codling moth larvae and mortality analyses

Fifth-instar codling moths, Cydia pomonella (L.), were used in experimental heat treatments.
Yokoyama et al. (1991) showed this developmental stage to be the most heat tolerant. Codling
moth larvae were obtained from the USDA-ARS Yakima Agricultural Research Laboratory,
Wapato, WA. Before each heat treatment, 200 larvae were extracted from artificial diet (Toba and
Howell, 1991) and placed in the heating block chamber. The system temperature was then ramped
up at one of three heating rates (1°Cmin~"', 10°Cmin~", and 18°C min ") to 46°C, 48°C, 50°C and
52°C. Insects were held at those final temperatures for three to five different periods that varied
between 0.5min at 52°C and 10 min at 46°C. These holding periods would allow a wide range of
mortality levels including 100%. The heating rate of 1°C min ' was selected to simulate the slow
heating for fruits using conventional heat treatments such as forced hot air and hot water baths
and the heating rates of 10°Cmin~' and 18°Cmin~' were used to simulate the fast heating for
fruits using RF and microwave energies.

To compare the effect of heating rates on insect mortality, four temperature—time
combinations, 46°C +40min, 48°C+ 5min, 50°C+2min, and 52°C+ 1 min, were selected just
below a complete kill level as described by the TDT curve (defining minimum temperature—time
required to achieve 100% mortality in a given sample) developed at the heating rate of
18°Cmin "

Control larvae were placed in the unheated block chamber for 50 min. For each temperature
and holding time combination, including controls, 200 larvae were treated at a time and all
treatments were repeated three times for a total of 600 larvae.

Commercial treatments would include rapid post-treatment cooling of cherries to minimize the
effect on product quality, so the treated larvae were immediately moved to cold storage at 4°C and
stored at this temperature for 1 day. After the cold storage, the larvae were held at 23°C, 60% RH
in a 16:8 (L:D)h photoperiod for 1 day to minimize the effect of cold stupor before examination.
Procedures for observing treated insects and calculating insect mortality were similar to those
described in Wang et al. (2002).

2.3. Insect thermal kinetic modeling

Different methods have been used to analyze thermal resistance of insects. Probit analysis is the
most common method. It is based on the assumption that the frequency of individual deaths in an
insect population under constant temperature follows the standard normal distribution with
cumulative probability of death increasing with time (Finney, 1971; Sokhansanj et al., 1990; Tang
and Sokhansanj, 1993). The probit analysis neither gives the kinetic parameters for insect thermal
mortality nor provides sufficient information from which new or other temperature—time
combinations can be chosen. Thomas and Mangan (1997) critically reviewed several models for
Mexican fruit flies. They recommended the use of a thermal dynamic kinetic model for estimating
the efficacy of quarantine treatments in developing new treatment methods, but recommended
use of the traditional probit analysis for confirming estimates. Jang (1986, 1991) detailed the
advantages of the kinetic model for determining the thermal death rate parameters of fruit flies.
Earlier, the use of probit 9 mortality as a criterion to ensure quarantine treatment security of fruits
infested by fruit flies and other pests had been questioned by Landolt et al. (1984).
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Several researchers have suggested that the logarithmic order of death was not always followed
by microorganisms (Alderton and Snell, 1970; Moats, 1971; King et al., 1979). Jang (1986, 1991)
used a modified logarithmic formula derived by Alderton and Snell (1970) to model thermal
mortality of fruit flies. Thus, the knowledge of the fundamental kinetics for thermal death of
insects allows the prediction of lethal times (LT) over a range of temperatures. Tang et al. (2000)
described the TDT concept in detail and its applicability to model insect pest heat destruction
kinetics. A significant advantage of the thermal kinetic model, whenever suitable to model death
rates over the probit method, is the ability to predict the efficacy of a thermal process based on
temperature—time history in host materials.

In developing a kinetic model to describe thermal kill of codling moth larvae, we used a classical
kinetic model approach in which we determined the order of reaction and then determined the
activation energy based on the dependence of reaction rate on temperature. In this analysis, the
ratio change of insect survivals (V) to initial insect number (Ny) during thermal treatments was
modeled as following the fundamental kinetic model:

d(N/No)
dr

where 7 is the kinetic order of reactions. The integration form of Eq. (1) was obtained for different
reaction orders as follows:

In(N/No) = —kt+c¢ (n=1),
(N/No)' ™ = -kt +¢  (n#1).

A linear regression analysis was performed in this study for the 0-, 0.5th-, 1st, 1.5th- and
2nd-order of reactions. The best-fitted line was determined by comparing the coefficients of
determination (R?) for all the treated temperatures. After the reaction order was determined and
the corresponding best-fit values of the constants k and ¢ were obtained, the model was used to
estimate the lethal time LT95, LT99, LT99_83, and LT99.9968.

The activation energy for thermal inactivation of test larvae was estimated from the
relationship between k and 7 on an Arrhenius plot (Stumbo, 1973; Tang et al., 2000):

k= krefe(—EA R/T)=(1/Toep) 3)

—k(N/No)", (1)

2)

where T is the absolute temperature (°K), k.. is the reaction rate constant at the reference
temperature T,.r (°K), E4 is the activation energy (J mol™ "), and R is the universal gas constant
(8.314Tmol ' K™ 1.
The activation energy E, for thermal kill of codling moths was also estimated from a TDT
curve (Tang et al., 2000):
E, - 2.303RTmin Tmax’ @)

z

where Thi, and Tp.x are the minimum and maximum temperatures (°K) of a test range,
respectively. z is the degrees of temperature increase required to result in one log reduction in time
on a TDT curve. The z value in the theory of Thermobacteriology is related to the value of rate
constant and activation energy in the classical reaction kinetic theory.

Once the z value, or k and E4 values, for a target insect pest are determined, the accumulated
temperature—time effect of a thermal treatment with a known temperature history on reduction of
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the organism can then be predicted with good accuracy (Tang et al., 2000). This method has been
the basis for calculating the thermal processing times for commercial food thermal pasteurization
and sterilization processes (Stumbo, 1973).

2.4. Cumulative effect of ramp period

Different heating rates resulted in different ramp periods to reach the same holding
temperature. It is possible to estimate the cumulative effect (corrected holding time) due to the
temperature ramp periods. For first order kinetics, we may use the following relationship to
approximately determine the cumulative effect for any given temperature—time history (Tang et al.,
2000), in terms of equivalent total LT M,ccum (min) at a reference temperature, T,.r (°C):

t
Maccum = / IO(T([)iT"d)/Z ds. (5)
0

The temperature—time history 7'(z) for the treatments used in this study is presented in Fig. 1,
where Ty is the starting temperature (°C); T is the holding temperature (°C); 7y and ¢; are the
times (min) at the end of the ramp and the holding period, respectively. During the ramp period,
the temperature is a linear function of time, and can be expressed as T'(f) = Ty + o, where o is the
heating rate (°C min~'). With this relationship and using the holding temperature as the reference
temperature (7., = T}), Eq. (5) can be directly integrated between the limits = 0 and ¢ = ¢, into:

4

Maccum = m[l - 107(T07T/1)/Z] + (tl - l()), (6)

where the first term represents the equivalent LT at the holding temperature accumulated during
the ramp period, and the second term corresponds to the actual holding time. The above relation
can be used to compare treatments at different heating rates, holding times and temperatures
(Tang et al., 2000). An average z value of 4°C was used, based on the results of Ikediala et al.

Temperature (°C)

Holding time
| —

0 fo t,  Time (min)

Fig. 1. Typical temperature—time history used in this study.
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(2000), and the initial temperature was 22°C. The corrected treatment times corresponding to the
three heating rates for the holding temperatures of 46°C, 48°C, 50°C, and 52°C were compared.

3. Results and discussion
3.1. Kinetics of codling moth mortality

The survival in unheated controls was high (92.4+2.8%), suggesting negligible effect of
shipping and handling. Table 1 gives the coefficients of determination (R?) for different reaction
orders for all the treatment temperatures to kill the codling moth larvae. The first order reaction
was best suited to describe thermal mortality kinetics for fifth-instar codling moths at treatment
temperatures above 48°C. But for the overall tested temperature range between 46°C and 52°C,
the 0.5th order reaction was most applicable. The 0.5th order reaction was also found most
suitable for fifth-instar navel orangeworms (Wang et al., 2002).

The thermal mortality curves for fifth-instar codling moths are shown in Fig. 2 together with
the best-fit curves based on the 0.5th order reaction. The thermal death constants for the 0.5th-
order reaction model are presented in Table 2. The established thermal death kinetic model was
further used to predict the LT to reach 95%, 99%, 99.83%, and 99.9968% mortality (Table 3).
Table 3 also lists the observed minimum holding times at each temperature to achieve 100%
mortality in tested samples. Complete kill in samples of 600 insects was obtained after holding at
46, 48, 50, and 52°C for 50, 15, 5, and 2 min, respectively. The predicted values for LTgg g3 and
LTg9 9963 Were close to the observed results with samples of 600 insects. The discrepancy might
have been caused by the limited resolution due to experimental holding time intervals (e.g., 0.5 to
I min at 52°C but 10 to 15 min at 46°C) used in experiments at each holding temperature (Fig. 2).
As expected, percentage mortality increased with increasing temperature and holding time. It is
interesting to note in Table 3 that only about 10% extra time was needed to increase the efficacy of
a heat treatment from 99% mortality to 99.9968% (Probit 9) when fifth-instar codling moths were
fully exposed to a constant temperature.

Fig. 3 shows a TDT curve at the heating rate of 18°Cmin ' that defines the minimum
temperature and time requirements with the selected time intervals to achieve 100% kill of
samples of 600 insects. The z value was estimated to be 4.2°C from the TDT curve. The observed

1

Table 1
Estimation of the best kinetic order (n) for the thermal kill of fifth-instar codling moths
at four temperatures by comparing the coefficients of determination (R?)

Temperatures (°C) R? for different order n

n=20 n=20.5 n=1 n=15 n=2
46 0.991 0.954 0.663 0.479 0.460
48 0.868 0.965 0.885 0.492 0.412
50 0.735 0.857 0.972 0.876 0.858

52 0.819 0.957 0.940 0.789 0.769
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Fig. 2. Thermal mortality curve of fifth-instar codling moths at different temperatures and at the heating rate of
18°Cmin~". Each point represents 600 larvae and the lines were obtained by regression using a 0.5th order reaction

model. Ny and N stand for initial and survival insect numbers.

Table 3

Table 2

Thermal death constants for 0.5th order reaction model for fifth-
instar codling moth at four temperatures and the heating rate of

18°Cmin '
Temperature  Thermal death constants of (N /NO)O'5 =—kt+c
Q®)
k+SE ¢+ SE
46 0.0189+0.0024 1.05554+0.0984
48 0.0691 +0.0066 0.9584+0.0869
50 0.20164+0.0581 0.94014+0.2175
52 0.5056 +0.0620 0.9488+0.1013

Comparison of lethal times (LT, min) obtained by experiments and 0.5th order kinetic models
(Eq. (2)) for fifth-instar codling moths at four temperatures and the heating rate of
18°Cmin ', followed by 24 h cold storage at 4°C

Temperature Observed
“C) 100% mortality for 0.5th order kinetic model
600 insects (min)
(~LTg953) LTos LTy LToy83 LToy9.9968
(probit 9)
46 50 44.0 50.6 53.7 55.6
48 15 10.6 12.4 13.3 13.8
50 5 3.6 4.2 4.5 4.6
52 2 1.4 1.7 1.8 1.9
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Fig. 3. Thermal-death-time curve defines minimum temperature-time to completely kill 600 fifth-instar codling moths
at a heating rate of 18°Cmin~'. The straight line (logs= 12.41 — 0.23T) was obtained by linear regression
(R? = 0.996).

-0.5
= Experiment
‘ — Regression
S EESEERTELIES boommroooens R booonomenees Gkt
4 | | ) i
A NG prrey
A R i Pommmeeeeeees Foooeoooes oo o SEREEEEEES
2.5 . i . i : I - I .
3.05 3.07 3.09 3.11 3.13 3.15

1/T+10% (K)

Fig. 4. Arrhenius plot for temperature effects on thermal death rates of fifth-instar codling moths. The straight line
(logk = 75.22 — 24.64x1000/T) was obtained by linear regression (R> = 0.995).

exposure time for 100% mortality of all 600 test insects corresponded to the estimated LT needed
to achieve at least 99.83% mortality at a given temperature. The relationship (logz = 12.41 —
0.23T) between the observed exposure times to achieve 100% insect mortality and the treated
temperatures was obtained by linear regression with R> = 0.996. The value of k obtained from
0.5th order reaction relationship followed an Arrhenius relationship (Eq. (3)) which is expressed
as logk = 75.22 — 24.64x1000/T with R> = 0.995 (Fig. 4).
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3.2. Activation energy

The activation energy for thermal kill of fifth-instar codling moth was calculated from Egs. (3)
and (4), based on a z value of 4.2°C, to be 472 and 473 kJ mol ™', respectively. Table 4 compares
the activation energy (E£4) of different insect pests, microorganisms, and quality parameters of food
commodities. The activation energy for thermal kill of the insects ranged from 400 to 958 kJ mol".
The E, values for fifth-instar codling moths obtained in this study compared well with those of
fifth-instar navel orangeworm (Wang et al., 2002) and of the four species of fruit flies reported by
Jang (1986, 1991) and Moss and Chan (1993). In general, the activation energy for thermal kill of
insects was slightly greater than that for thermal inactivation of pathogenic microbial spores and
much greater than for softening and many other quality changes in commodities due to heat
(Table 4). Like other insects, codling moth larvae were much more sensitive to increase in
treatment temperatures than most fruit quality aspects. This provides an opportunity for the
possible development of relatively high-temperature/short-time thermal treatment processes that
may kill insects while having minimal impact on product quality (Tang et al., 2000).

3.3. Effect of heating rates on insect mortality

Table 5 highlights the effect of three heating rates on insect mortality under four temperature-
holding time combinations (46°C + 40 min, 48°C + Smin, 50°C + 2 min, and 52°C + 1 min). Using

Table 4
Comparisons of activation energies for thermal kill of insects and microorganisms with that for food quality changes
due to heat treatments

Insects/materials Temperature Activation energy Source
range (°C) E4 (kJmol™")

Mediterranean fruit fly

Eggs 45-47 784 Jang (1986)

First instar 4548 656 Jang (1986)
Melon fly

Eggs 43-46 518 Jang (1986)

First instar 4548 650 Jang (1986)
Oriental fruit fly

Eggs 43-46 958 Jang (1986)

First, early and late third instar 43-48 209-401 Jang (1986, 1991)
Caribbean fruit fly (eggs) 3742 440 Moss and Chan (1993)

43-50 445 Moss and Chan (1993)
Queensland fruit fly (eggs) 42-48 538* Waddell et al. (2000)
Navel orangeworm (fifth-instar)® 46-54 510-520 Wang et al. (2002)
Codling moth (fifth-instar)® 46-52 473 This study (from TDT)
46-52 472 This study (from k—T)

Quality (texture—softening or firmness, 50-70 42-126 Lund (1977), Rao and
color, flavor, etc.) Lund (1986)
Microorganisms (spores) 100-130 222-502 Lund (1977)

#Estimated by the authors from the reported data.
®Parameter obtained at 18°C min~! heating rate.
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Table 5

Mortality (%) of fifth-instar codling moths after heat treatments with three different
heating rates from 22°C and holding for selected periods (three replicates), followed
by 24 h cold storage at 4°C

Temperature + Mortality (%) at heating rates
holding time (°C + min)

1°Cmin " 10°C min " 18°C min "~
46 +40 100 (24)* 100 (2.4) 87.4+8.6 (1.3)
48+5 100 (26) 91.34+6.2 (2.6) 71.0+9.2 (1.4)
50+2 100 (28) 97.3+1.9 (2.8) 92.5+0.2 (1.6)
52+1 100 (30) 100 (3.0) 90.5+6.4 (1.7)

Value in the parenthesis indicates the ramp time to reach the targeted
temperature in min.

the heating rate of 1°C min~!, all four treatments achieved 100% kill, whereas none of the four
treatments achieved 100% kill when using the heating rate of 18°Cmin~' (Table 5). The added
thermal mortality in the treatment using slow heating rates, however, may be the result of the
extended ramp period in which the insects were exposed to the elevated temperature. For example,
the ramp time from 22°C to reach 52°C was 30min when heating at 1°Cmin~' compared to
1.7 min when heating at 18°Cmin".

The accumulated LT during ramp periods (M, cum) for the three heating rates from initial 22°C
to the set temperatures was calculated using Eq. (5). The LT accumulated during the ramp period
was about 1.8, 0.2, and 0.1 min (equivalent to holding time at the end temperature) for the heating
rates of 1°Cmin~", 10°Cmin~", and 18°Cmin~", respectively. Those values were not affected by
the end temperatures. Adding the actual holding time listed in Table 5 to the accumulated LT
during the ramp period suggested that the corrected treatment times at each temperature
increased with the reduction in the heating rates. The accumulated LT had a significant effect on
the short holding time at high temperatures. The incomplete kill of all four treatments at
18°Cmin~! heating rate might be due to little lethality accumulated during the ramp period at the
18°Cmin . The large difference in the mortality (Table 5) between 10°Cmin~' and 18°C min "
may not have been caused by the small difference in the calculated cumulative LT. Explanation
for the discrepancy requires further investigation.

This analysis has shown that treatments in which different heating rates were used to achieve
the same holding temperature were not equivalent, and thus did not impart the same heat
lethality. With slow heating rates, the insects would have been exposed to the lethal temperatures
for a longer time than with treatments using faster rates. The contribution of the ramp period can
be very significant at high temperatures if the heating rate is small.

Neven (1998a) observed that at heating rates between 0.13°Cmin~"' and 0.2°Cmin ", the slower
the rate of heating, the longer the codling moth larvae had to be exposed to the final treatment
temperature to achieve 95% mortality. Lester and Greenwood (1997) also reported that a low
heating rate and long exposure of insects to elevated but non-lethal temperatures (<42°C) may
condition insects such that subsequent treatment at lethal temperatures above 42°C are less
effective. This implies that higher heating rate should provide greater mortality (require smaller
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LT) because of a lack of non-lethal temperature conditioning of the insects. In this study, the total
accumulated lethality required for 100% kill of the larvae appeared to be slightly higher at
1°C min~" than at 18°C min~". This is contrary to what was observed by Neven (1998a). It is clear
that the heating rates used in this study were much greater than those used by the above author
and that the relatively long ramp time at even the lowest heating rate (1°Cmin~") tested in this
study might not be adequate to allow insects to develop thermotolerance.

4. Conclusions

The heating block system was suitable for determining experimental data concerning
temperature and heating rate effects on insect susceptibility to heat. Complete kill of 600 insects
was achieved at a heating rate of 18°C min~' with a minimum exposure time of 50, 15, 5, and
2min at 46°C, 48°C, 50°C, and 52°C, respectively. The fundamental 0.5th reaction model was
suited for predicting the thermal death kinetics of codling moth larvae. The activation energy for
thermal kill of fifth-instar codling moth was about 473 kJ mol ™' both from a TDT curve and an
Arrhenius plot. The LT accumulated during the ramp period to the end-point temperature was
about 1.8, 0.2, and 0.1 min for the heating rates of 1°Cmin~!, 10°Cmin~"', and 18°Cmin~',
respectively. The faster heating rate tended to require a longer holding time at the end
temperatures to achieve similar mortality of codling moth larvae compared to the slower rate with
test heating range. Fifth-instar codling moths were not able to increase their thermal tolerance
with a decrease in the heating rate in the tested range. The methods and concepts described in this
report may be extended to study other infesting pests of commodities for which heat treatment is
being considered as an alternative quarantine treatment.
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