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ROLE OF DYNAMICS IN INTERACTING FERMION SYSTEMS: THE STRUTINSKY
METHOD AND GROUND STATE PROPERTIES OF QUANTUM DOTS
Abstract
by Tatsuro Nagano, Ph.D.

Washington State University
December 2002

Chair: Steven Tomsovic

We investigate nano-structure quantum dots which show conductance peak oscillations in
the Coulomb blockade regime. Although a random matrix theoretical approach (RMT) has
made successful predictions, the statistical behaviors of the peak spacings remain mysterious,
indicating the necessity of a more subtle treatment of the residual interaction. We pursue a
many-body framework, which explicitly includes electron-electron interaction in the context
of density functional theory. Based on the idea of the Strutinsky shell correction method, the
ground state energy is expressed by an approximate series expansion in the fluctuation part
of the density functional, and the physical interpretation of each successive term is analyzed.
We identify the energy contribution of the residual interaction due to the screened Coulomb
potential. Given that irregularly shaped quantum dots consist of quasiparticles interacting
through a screened Coulomb interaction, we employ the two-dimensional coupled quartic
oscillator as an effective confinement. The advantage of employing the quartic oscillator is
that the degree of chaos can be tuned continuously from integrability to pure chaos, allowing

us to study how the nature of the dynamics influences the single-particle orbital occupancies
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when spin is taken into account. In the analysis of the ground state configuration and
spin polarization, the conductance peak spacings are reproduced and the electron orbital
occupations are observed to depend upon the nature of the dynamics. The greater the

chaos, the less effective the residual interaction in altering the occupations.
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Chapter 1

Introduction

1.1 Introduction and Motivation

It is difficult to imagine people’s daily life without electricity. From a light bulb to high-end
computers, a battery to power plant, the use of electricity can be found anywhere around
us.

The interaction law between charged objects was discovered by Coulomb in the late
1700’s. Later, Millikan observed single electron effects in his experiment of falling rate of
oil droplets in 1911. Ampere, Ohm, Faraday, Gauss, Maxwell, Lorentz, and many others
contributed to the development of the field of electrodynamics in the 19th century.

With the discovery of the Planck theory of radiation employing Planck’s constant h
in 1900, microscopic phenomena began to receive significant attention. Einstein proposed
light quanta in the illustration of the photoelectronic effect, and de Broglie, Heisenberg,
Schrodinger, and Dirac devoted themselves to the establishment of quantum mechanics in
early 1900s. They investigated the microscopic - atomic scale - phenomena.

In the last 20 years, nanostructure technology has undergone dramatic progress due to
breakthroughs in sample fabrication techniques. These technologies enable us to investigate
the electronic properties of devices within sub-micron scales. At these dimensions and at
low temperatures, quantum mechanical interference effects play an important role, but at

1



the same time, such systems are large enough to consider averaging behaviors. The scale,
intermediate between the microscopic and the macroscopic levels, is called mesoscopic. Meso-
scopic physics, a word created by Van Kampen in 1981 [1], deals with phase coherent trans-
port phenomena and also thermodynamical properties of disordered electronic systems. The
remarkable growth of the field is also due to the fact that the researchers working in differ-
ent areas have found important underlying commonalities in apparently distinct phenomena.
For example, random matrix theory (RMT) [2,3,10,62] gave insight into the physics of con-
ductance fluctuations, and transport properties of disordered systems are well understood
within the framework of diagrammatic perturbation theory [4]. These two are interrelated
and deeply connected as well to the semiclassical mechanics of chaotic systems [5-7]. One of
the significant phenomena in mesoscopic physics [50], especially concerning quantum trans-
port, is the universal conductance fluctuations (UCF) [8-10]. Fluctuations of measured
physical quantities are random but reproducible with respect to some external parameter.
Although detailed information of each individual measurement is essentially impossible to
predict, the statistical behavior of ensemble measurements shows universal features for fully
chaotic systems.

In this dissertation, semiconductor quantum dots are studied in the Coulomb blockade
(isolated) regime. The “dot” represents an extremely small region, and it contains from one
to a few thousand free electrons. The size of the dot (~ 100nm — 1um) is comparable to
the electron wavelength (~ 40nm), and the energy of the dot is discretized. Quantum dots

are sometimes referred as artificial atoms [11] because of the following characteristics. The



discretized energy levels are analogous to the orbitals of atoms, and the charging energy,
the energy required to add/remove an electron to/from the dot has similarity to the atom’s
ionization energy. While the study of atoms usually involves interaction with light, the
measurements of concern to us involve the conductance, which is determined by electron
transport properties. It should be emphasized that the advantage of “artificial” atoms is
the precise controllability of the system. The number of electrons in the dot, the size and
shape, the connection to the environment are all adjusted by externally applied electric fields.
In addition, the symmetries of the dot can be controlled by shape and/or by an external
magnetic field. Thus, the quantum dot is powerful probe with which to investigate the role
of quantum mechanics in mesoscopic physics.

In transport measurements, the dot region is attached to three terminals. Two of the ter-
minals allow electron exchange, called source and drain, while the third terminal is used as a
gate electrode. The quantum dot is considered isolated or closed when the electron transport
through the region can only be achieved by tunneling through the terminal junctions (source-
dot and dot-drain) which act as “quantum point contacts” [12-16], and the charge inside
the dot becomes quantized. This situation leads to the Coulomb blockade (CB) oscillation
of conductance observed in many experiments [30]. An additional important consideration
is that the conductance behavior is greatly influenced by temperature [17,56]. The Coulomb
blockade itself is a classical phenomenon [51], and current flow through the system is sup-
pressed due to its charging.

Quantum dots and point contacts can be created, for instance, in a two-dimensional elec-



tron gas (2DEG) which exists at the interface of a GaAs-AlGaAs heterostructure 53,56, 58,
93]. The size of the dots is typically 100nm — 1um, which is larger than the Fermi wave-
length of electrons (~ 40nm) but smaller than the mean free path of electrons (~ 10um),
and so the measurements are performed in the ballistic regime. There are from a hundred
to a thousand electrons contained in the dot depending on design and doping. At low tem-
perature (few hundred milli-Kelvin), the mean energy level separation of electrons exceeds
the thermal energy, and transport through the quantum dot occurs by resonant tunneling.
By adjusting the gate voltage, this resonant tunneling produces conductance oscillations.
When the charging energy of the dot and the electron level spacings are comparable, both
the Coulomb blockade and the resonant tunneling have significant roles.

The Coulomb blockade conductance oscillations have been studied within the simple the-
oretical framework referred to as the constant interaction (CI) model [52, 54, 55,63|. This
model represents the system'’s energy in terms of the classical charging cost, the energy re-
quired to add an electron to an isolated metal region, and electron occupation energies (the
quantum mechanical energy due to the discretized levels of the dots). The CB peak period
and peak shapes are successfully predicted by this theory. RMT was originally developed
by Wigner [31-34] to investigate neutron resonances of compound nucleus. Energy spectra
are obtained in term of eigenvalues of a large sized random matrix which approximates the
Hamiltonian of complex systems. Based on the Bohigas-Giannoni-Schmit conjecture [64], the
validity of RMT has been broadened to the study of single-particle chaotic systems. Based

on the fact that many of the dots come in irregular shapes, RMT provides a theoretical de-



scription of the dot’s single-particle energy levels, and the statistical behavior of peak height
distributions are well understood in this context [55]. On the other hand, this “constant
interaction plus random matrix theory” (CI+RMT) approach failed to predict the statistics
of the peak spacing distributions. Taking into account the electron spin degree of freedom,
the theory yields a d-function distribution (when adding the odd number electron) and the
Wigner surmise (when adding the even number electron) for the spacing distribution. Thus,
the resulting probability density gives a strong bimodal structure due to the spin. However,
the experimental measurements give Gaussian distributions with broad non-Gaussian tails
on both sides, and there is no such even/odd structure observed [57,57-59] (or at most
weakly).

Although some of the statistical properties of quantum dots have been successfully de-
scribed by RMT, the assumption that the ballistic quantum dots are generally chaotic must
be reconsidered for its validity. In fact, most of the irregular shaped dots produce smooth
effective potentials which represents both stable and unstable dynamical motions, and ex-
periments are proceeded with systems in the non-chaotic regime; see Ref. [93], for example.
Motivated by the discrepancies between the theoretical predictions and experimental obser-
vations concerning the conductance peak spacing distribution, we incorporate many-body
effects which explicitly account for the electron-electron interaction in the framework of
density functional theory. As opposed to the RMT approach, in which by definition the
Hamiltonian is represented as a random matrix, we employ a two-dimensional quartic oscil-

lator confinement, which has an ability of tuning the degree of chaos from near-integrability

[4]]



to fully chaos, to study the role of dynamics within the peak spacing distribution and the

ground state properties of quantum dots.

1.2 Organization of This Thesis

This chapter has introduced basic ideas of nanostructure quantum dots and our motivation
for the study of ground state properties of the quantum system in the Coulomb blockade
regime. The next two chapters give a more detailed introduction to quantum dots in the
Coulomb blockade regime and some basic foundation of RMT. Chapter 4 provides an intro-
duction to density functional theory and its application to quantum dots. Chapter 5 gives a
formulation of density functional theory to describe ground state energies. Chapter 6 presents
the development of the Strutinsky energy correction method. Chapter 7 discusses the con-
tribution of the residual interaction to conductance peak spacings. Chapter 8 demonstrates
the validity of the Strutinsky scheme employing a one-dimensional “toy” model. Chapter 9
discusses the applicability of the Strutinsky method to realistic two-dimensional confined
systems. Chapter 10 gives the study of coupled quartic oscillators and behavior of the resid-
ual interactions. Chapter 11 deals with the system which breaks all anti-unitary symmetries
and discusses the residual interaction effects. Chapter 12 provides the system constructed
by the random superposition of plane waves and discusses the relations to the quartic oscil-
lator systems. Chapter 13 discusses conductance peak spacings and ground state properties
of quantum dots. Finally, Chapter 14 summarizes the results. Some of the computational

concepts and detailed derivations of certain relations are provided in the Appendices.



Chapter 2
Quantum Dots and Coulomb Blockade

2.1 Structure of Quantum Dots

There exist many kinds of quantum dots. Each dot differs in shape, size, material, and
fabrication process, depending on the purpose of experiments. Here, we introduce the semi-
conductor quantum dot generated in a two-dimensional electron gas (2DEG) which forms at
the interface of a GaAs/Al,Ga,_,As heterostructure [18-20].

The heterostructure layering consists of a GaAs substrate, a AlGaAs layer with an n-
type dopant, which provides electrons to form a 2DEG, and thin GaAs cap to prevent the
AlGaAs layer from oxidation. Typical layer thicknesses are 50-200nm of AlGaAs within a
10nm GaAs cap. This places the 2DEG 60-210nm below the surface. The band structure
provides a potential well at the interface of GaAs-AlGaAs layers, and electrons only occupy
the conduction band (the subband of the potential well) below the Fermi energy. At low
temperature, there is only one subband available below the Fermi energy; the second subband
is 150meV above. Since the typical Fermi energy is 10meV and the device temperature is
set below 1K (86ueV), the second subband is essentially completely unoccupied, and the
electron gas can be treated as two-dimensional. Due to the fact that GaAs and AlGaAs have
only a slight lattice mismatch, the 2DEG layer is essentially defect free. As a consequence,
the electron mean free path in the 2DEG layer can be 10um or more. Other significant

7



| __EiAuGe
AlGaAs i Ohmic contact

GaAS substrate

Figure 2.1: Schematic diagram of a GaAs/AlGaAs heterostructure. A Au gate is deposited
on the surface, and the 2DEG region can be accessed through a NiAuGe ohmic contact.
The 2DEG layer is located at the interface of the GaAs/AlGaAs heterostructure. For more
detail, see Ref. [20].

parameters in the 2DEG are [19,21]: effective mass m* = 0.067m. where m, is the electron
mass, density of states p(E) = 2m*/2rh? = 2.8 x 10'° (cm~2meV ~!), level spacing A(E) =
1/p(E) = 3.57 (ueVum?), Fermi wave vector kr = 1.58 x 10° (cm™'), Fermi wavelength
Ar = 2n/kr = 40 (nm), Fermi energy Ef = (hkr)?/2m* = 14.0 (meV), Fermi velocity
vg = hkp/m* = 2.7 x 107 (cm/s), scattering time 7 = 0.38 — 38(ps), and mean free path
[ = vpr = 102 — 10*(nm).

In addition to the vertical confinement of the 2DEG layer, one must restrict the electrons
to a small region to create a “dot”. With electron lithography, the thin film of metal (Au) is

patterned on top of the GaAs cap layer to provide the gates. Applied negative gate voltages



Figure 2.2: Schematic diagram of quantum dot from the top. Grey colored regions are
gates, and the circle represents the confined dot region. Applied negative voltages effectively
confine electrons in the 2DEG layer. The shape of the dot can be distorted by changing the
strength of the gate voltage. Arrows indicate the direction of current flow. For actual STM
images; see Ref. [20] for example.

generate confining potential barriers at the 2DEG surface and depletes the electrons. In
many cases, there are several gates patterned on the wafer. The dot shape is controlled
by tuning some of the gates, and other gates are used to control the connection to outside
electron reservoirs, source and drain. The quantum point contact is accomplished by the
control of these gates. The statistical ensemble of data is obtained by altering the shape of
the dot without changing the capacitance of the system. The resulting effective dot size is
typically a few microns or less, the dot contains from one to a thousand electrons, and the
temperature is kept below a few hundred milli-Kelvin.

The direct electrical connection to the 2DEG is achieved by ohmic contacts, and a small



source to drain bias voltage V4 is applied. The current flow across the system can be detected
by measuring the voltage change in V4. Thus, it is important to retain the voltage small

such that eV,q < kgT.

2.2 Quantum Point Contacts

As the simplest mesoscopic device, we introduce quantum point contacts. They are also used
in the coupling to quantum dots. Quantum point contacts (QPCs) are short one-dimensional
channels connecting electron source and drain. As we just explained in the fabrication of
quantum dots, the point contacts are created at the 2DEG layer with negatively applied
gates to produce potential barriers. By adjusting the gate voltage, one can make the size of
the opening comparable to the Fermi wavelength, and the conductance through the junction
becomes quantized [13, 14, 19, 22-24].

Let us consider the conductance through QPCs following the description given in Ref. 19,
24]. Suppose two gates are arranged in line with a small gap in between, the x-y coordinate
is conveniently defined such that the direction of the current is taken as y-direction and the

gates are aligned in x-direction. This way, the Hamiltonian is given as

. B3 . 7
H= +eV(z) + 5.5 (2.1)

where m* is the effective mass of electron, V'(z) is the potential due to the negatively applied

gate voltages, and electrons propagate as free particles in the y-direction. This assumption is
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valid when the 2DEG layer is reasonably defect free [25]. Assuming the harmonic oscillator

confinement in x-direction [12], V(z) = m°w?z?/2, the energy eigenvalues are

E, = (n-%)ruwf

2
h2k2
2m*

(2:2)

where n = 1,2, ... (note n starts with 1). When a small bias voltage V4 is applied between
source and drain, the chemical potential of both sides becomes eV,4 = pus; — pq, and this
defines the upper bound of the electron energy uy < Er < pu,. Electrons travel through
the junction only via the energy levels Ex < Ef at k, = 0 occupying the lowest N orbitals.

Thus, the net current is given by

[=ey [ dEQ1/2)pn(EYon(EYTW(E), (23)

n=1 Ha

where the sum is taken over all occupied subbands, the one-dimensional density of states
is pa(E) = \/2m*/E/wh, the velocity of electrons is va(E) = \/2E/m*, and T,(E) is the
transmission probability of the nth subband. T,(E) are the eigenvalues of the product of
transmission matrix and its Hermitian conjugate, and its values range from 0 to 1. For small

V.a bias, T,,(E) ~ T,(EFr), and one obtains the conductance

I_EN 2¢?

= ~ 9 .
G Vo= h ng(Ep)— NV (2-4)

where in the last step, T,(EFr) is approximated to 1, provided that the quantum point
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contact is ideal; that is, no backscattering. Each occupied subband equally contributes to the
conductance by 2e?/h. Thus, by sweeping the gate voltage V,, a conductance staircase with
step height of 2e2/h can be observed. This is the case of zero temperature and no magnetic
field, and the factor of 2 represents the spin degree of freedom. For finite temperature, the
stairs are smeared, and for non-zero magnetic field, the spin degeneracies are split and the
conductance shows a staircase with step of e?/h giving the quantum unit of conductance.
Therefore, to close a quantum dot, the conductance through a QPCs is set to g < €?/h

making the number of modes at each point contact less than one.

2.3 Coulomb Blockade

2.3.1 Coulomb Blockade in Classical Regime

When an isolated region is weakly coupled to two leads by the quantum point contacts
(g < €%/h) and controlled with the gate electrode to adjust the energy of the region, the
current through this region is suppressed. Considering the device as two initially neutral
regions consisting of the isolated “island” and its environment, it requires the system to pay
an energy cost to transfer an electron from one region to the other. This energy cost is the
capacitive charging energy, and at low temperature, the suppression of the conductance is
known as the Coulomb blockade {53].

The theory of the Coulomb blockade was developed earlier by Kulik and Shekhter [91,92]

in the classical regime where A < kgT <« €?/C, kg is the Boltzman’s constant, and A is the
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mean level separation of island’s energy levels. In this regime, the island’s energy is treated
as a continuum, and this is considered as a good approximation for metals. The total energy

of classical electrostatic energy of the system is

Utn) = ~(ne)V; + 2 (25)

where n is the number of electrons in the island and V/ is the externally applied gate voltage.
Because of the point contacts, electron charge is discretized, and so the relation Q@ = C,V,
does not hold. For the range (N — 1/2)e/C, < V, < (N + 1/2)e/C, or equivalently V, =
(N + z)e/C, with |z| < 1/2, where C, is capacitance between the island and the gate, the
total energy is minimized when n = N, and the charge of the island changes linearly in
V, from —e/2 to e/2. However, when V;, = (N + 1/2)e/Cy or z = 1/2 the total energy
becomes minimum both at n = N and N + 1 giving U(N) = U(N + 1), and the charge
becomes either +e/2. Only at this charge degeneracy point, electrons are allowed to move
from the source to the island and back to the drain, allowing the number of electrons inside
the island to fluctuate from N — N +1 — N. As a consequence, current flows across the
dot. By sweeping the gate voltage, the oscillation of conductance emerges. The period of
this oscillation is AV, = e/C,, and it is related to the energy cost of removing the Coulomb
blockade AE = e?/C,. Since there exist source-dot and dot-drain capacitances, the total

capacitance is, in fact, Cioe = C,; + C,s + Cy, and this gives the period

e
Al = C,"ae (2.6)



where E. = €?/C,,, is the charging energy and a = C;/Cqo.

2.3.2 Coulomb Blockade in the Quantum Regime

In semiconductor quantum dots, the situation is different from a metal. Due to the small
system size, the energy of the isolated region “dot” becomes discrete, and at low enough
temperature, one has to take the effects of the discreteness of the energy levels into account.
In this regime, the charging energy, the single-particle energy spacing, and the thermal
energy are related as e2/C ~ A > kgT. To isolate the dot, the leads must be attached via

a point contact by g < e?/h. The total energy of the system containing NV electrons is
U(N) = E4e(N) — (Ne)aV, (2.7)

where the energy of the dot region is

E4oe(N) = (212(:)? +) & (2.8)

i

where ¢; is the single-particle energy levels of the dot. It should be mentioned that the dot
energy now consists of the single-particle energies of all occupied levels in addition to the
charging energy.

Whereas in the classical regime, the current flow occurs at the degeneracy point, there is
an additional condition for quantum systems in order to have current flow. In the limit of

zero-temperature and small, applied source-drain bias V.4, the gate voltage must be tuned
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Figure 2.3: Schematic view of Coulomb blockade in the classical regime. Number of electrons
in an isolated island, n, charge of island, Q, and conductance through island, G (in arbitrary
units), are plotted as functions of gate voltage respectively from top to bottom. Voltage is in
the unit of e/C. Current flow is suppressed between conductance peaks due to the Coulomb
blockade.



such that the first unoccupied energy level of the dot matches the Fermi energy of the electron
reservoirs (source and drain). As a consequence, an electron can move into the dot and out
to the drain by resonant tunneling, and current will flow in response to the bias voltage.
When the gate voltage is tuned such that eaV; = E4ot (N +1) — E4oe(IV), the total energy
is degenerate, U(N) = U(N +1), and current flows through the dot. The period of oscillation

or the conductance peak spacing AV} is expressed as
ealAV, = E4ot(N + 1) = 2E40t(N) + Egar (N — 1) = A%2E 0 (N), (2.9)

where A2E,,, represents the second difference in the ground state energies of the dot. As-

suming that N electrons fill the lowest N states, the peak spacing becomes

2
A?Eg(N) = "5 +enat — €N (2.10)

Furthermore, if one takes the electron spin degeneracy into account, the spacings are

€2/C +ex.1 —en N even
A?E e (N) = (2.11)

e?/C N odd.

This is called the constant interaction (CI) model since the electron interaction is always

taken as constant through the charging energy e?/C.
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Figure 2.4: Schematic illustration of Coulomb blockade in quantum dots. Fermi energy of
source and drain is Er with negligibly small bias V34, and the discrete energy levels are
shown (A is the associated mean level spacing). Left figure: the charging energy creates an
effective gap €2/C between the highest filled level and the lowest unoccupied level. Since
the chemical potential of the dot does not match the Fermi levels of the source and drain,
the electron tunneling process is prohibited. The number of electrons inside the dot is fixed.
Right figure: the gate voltage is tuned such that the lowest unoccupied energy level matches
the Fermi energy of reservoirs. This situation lifts the Coulomb blockade and allows an
electron to tunnel through the barrier one at a time. As a consequence, the conductance
shows a peak.
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2.4 Constant Interaction Model and Conductance Peak
Spacings

Within the constant interaction model, the conductance peak spacings are given as a sum
of the charging energy and the single-particle energy level spacing. In practice, since the
charging energy is a smoothly varying function of gate voltage, the spacing variations come
from quantum fluctuations.

Random matrix theory (RMT) was originally developed for the study of strongly in-
teracting many-body systems such as compound nuclei. Based on the Bohigas-Giannoni-
Schmit conjecture, the single-particle quantum system, whose classical counterpart repre-
sents chaotic dynamics, can be investigated in terms of RMT; see next chapter for more
detailed explanation of RMT. Because many of the dots come with disordered or irregular
shape, the energy spectrum of the dot can be approximated by the eigenvalues of a random
matrix. In addition, quantum dot experiments normally proceed by collecting an ensemble
of measured data. This indicates that the important physical quantities are not system
specific information, such as shape for example, but more generic properties such as sym-
metry classes. This, in fact, supports the applicability of RMT to the study of irregular
systems. Time-reversal symmetry within a dot is controlled by applying a magnetic field.
The presence (absence) of magnetic field breaks (preserves) the time-reversal symmetry.

Based on the Gaussian ensemble, the Wigner-Dyson statistics give the distribution of

nearest neighbor energy level separations €y.; — ex (NNS) for chaotic systems. For time-
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reversal invariant systems and for time-reversal non-invariant systems, the NNS distributions

are approximately given as

Pwo(s) = gs e~ (GOE) (2.12)
32, —(4/7)s?
Pwp(s) = =S e (GUE) (2-13)

where s = (€41 — €;)/A and A is orbital mean level spacing. GOE and GUE represent
Gaussian orthogonal ensemble and Gaussian unitary ensemble respectively (they will be
discussed in the next chapter). Using these distributions, the distributions of the CB peak

spacings are found to be

P(s) = [5(3) +3s e’("/“)’z] (B = 0) (2.14)

N N -

P(s) = [6(3) + i—fsz e-“/")”] (B #£0). (2.15)

where the J-function comes from the charging energy e?/C. This approach is often called
the constant interaction plus random matrix theory (CI+RMT) or CI+SDRMT where SD
represents “spin degenerate”. In Fig. (2.5), the distribution curves are plotted for both the
presence and absence of magnetic fields. For each case, the bimodal structure is clearly
observed representing the electron spin effect. The width of the distribution (standard
deviation in the unit of the orbital mean level spacing A = 27h/m*A) are og=¢ = 0.62
and opyo = 0.58. For integrable systems, statistics of energy spectra can be described by

the Poisson distribution [110]. Within the CI model, the CB peak spacing distributions are
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given as

P(s) = % [6(s) + ae™] . (2.16)

The width of the distribution is o = 0.87.

The peak spacings are experimentally measured in irregular shaped quantum dots in the
Coulomb blockade regime [56,57,59,60,93]. The statistics obtained are significantly different
from the CI+RMT predictions. The distributions are symmetric and well described by a
Gaussian fit except for the long tails on both sides. The width (fluctuation) of distributions
are larger than predicted, and the fluctuations are of order 0.1 - 0.15 measured in units of
the classical charging energy E. [57,59,60]. Most importantly, no bimodal structure has
been observed as if the statistics are independent of the electron spin. The gas parameter of
the experimental dot setup [56,57, 59, 60] ranges from 0.93 < r, < 1.35 with the exception
of r, = 2.1 in Ref. [60]. The gas parameter, r,, is often used to characterize an electron gas
in metal; see next section.

Spacing distributions are expected to be bimodal in the absence of electron interactions.
The experimentally observed unimodal behavior is due to the strong electron interaction
effect as explained in Ref. [27]. Of the recent experimental study [93], the spin-pairing
effects in the peak spacings are observed in the measurements of dots with higher electron
densities. The gas parameter of their dots is r; = 0.72 and the electron interactions are
weaker than previous experiments. However, the spacing distributions are still far from the

CI model predictions.
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Figure 2.5: CB conductance peak spacing distributions predicted by CI+SDRMT. Solid line
represents the spacing distribution in the absence of magnetic field (B = 0), and the dashed
line represents the distribution in the presence of a magnetic field (B # 0). The charging
energy is subtracted off from each point to shift the distributions by €?/C. Delta functions
are shown for both at s = 0 (on top of each other). Distributions are based on the Wigner
surmise, and energy level separations are measured in the unit of the orbital mean level
spacing. For the sake of comparison, the dotted line represents the spacing distribution for
integrable case. The Winger surmise for chaotic case are replaced by the Poisson statistics.
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2.5 Theoretical Approaches to Many-Body Systems

The failure of the constant interaction model in predicting the statistical behavior of the
conductance peak spacing, indicates that the non-interacting single-particle treatment of
the system has to be replaced by more involved many-body, explicitly interacting electron
systems.

To characterize the interacting electron systems, the gas parameter r, is often used [30]. r,
represents the electron interaction strength at an average spacing among electrons relative
to the kinetic energy. Let us consider an electron gas in two-dimensional space. Since
the electron is a fermion, each particle can stay at the same position r only by having
different momentum values based on the semiclassical point of view. In momentum space,
this situation can be considered as the states occupying the circle of radius pr where pg is
the Fermi momentum. Knowing that each state occupies a volume of k in phase space, the
number of states in unit coordinate space, or equivalently density of electrons, is given by
n = (2/h®)np%, where 2 represents the electron spin degree of freedom. The gas parameter
and electron density are related as 7(r,aq)?>n = 1 because r, is the radius of the circle which
encloses the unit electron charge in units of Bohr radius ao = h?/me?. Therefore, the typical
electron interaction energy and the averaged kinetic energy are given as E, = €2/(2r,aq) and

Ex = Er/2, and the ratio becomes

& _ €2/(2r,aq)

Ex — @/2m))2 " (217)
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where the Fermi energy is Er = (h%/2m)(2/r2a3). If the interaction is weak and the system
is dominated by kinetic motion, the ratio r, becomes small and it describes a high density
system. In this limit r, < 1, the interaction can be treated as a perturbation to the free
propagating particle motion. On the other hand, when the interaction exceeds the kinetic
energy, r, has a large value representing low density electron systems. For r, > 1, electrons
tend to form a lattice to minimize the interaction. In the intermediate range, neither of the
effects can be treated perturbatively, and many of the metal electron systems fall into this
range 1 < r, < 6 [26], requiring the most difficult theoretical treatment. For the 2DEG

system of our interest, the ratio is ry ~ 1.

2.5.1 Approximations to Many-Body Hamiltonian

In principle, a single-particle system governed by the time-independent Schrédinger equation
[p?/2m + V(r)]¥(r) = Ev(r) can be solved exactly for any potential confinement. Whereas,

for many-body systems, the Schrédinger equation becomes

N h2 e2 N 1
(Z [—E—V,? + V(r.-)] +3 3 ———) ¥(ry,....,rn) = E¥(ry,....,rN) (2.18)

: m & Iri -l

where the Coulomb interaction is employed as mutual particle interaction. Because of the
coupling of the interaction term, it is prohibited to decompose the Hamiltonian into N-
independent equations for each electron. To solve this, one has to rely on approximation
techniques. We introduce three commonly used approaches in the study of CB peak spacing:
an exact diagonalization method [27,57], the Hartree-Fock method [71-73], and density
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functional theory [28,29,77,100].

The exact diagonalization is suitable for a system containing a small number of particles.
Although, in principle, the matrix representation of the Hamiltonian requires a complete set
of some infinite basis; with a suitable choice of basis, there are cases in which the eigenstates
of the system can be approximated well by a finite basis set which spans the sub-space
in Hilbert space. The Hamiltonian matrix is constructed by evaluating the exact many-
body Hamiltonian in terms of this truncated basis set. Matrix diagonalization proceeds
numerically to obtain energy eigenvalues and corresponding eigenstates. The choice of a
suitable basis or matrix truncation technique will be discussed in chapter 11. Due to finite
computer resources, the particle number is limited (.V ~ 15) in this scheme. Although this
number is rather small, it has an advantage of accounting for all of the interaction effects
including correlation of wavefunctions.

In the Hartree-Fock method, many-body wavefunctions are approximated as the Slater

determinant of NV spin-orbit functions,

$1(r1) oi(r2) ... oi(rw)
1 ¢2(r1)  d2(r2) ... oa2(rN)
¥(ry,....EN) = il det . - (2.19)
i on(r) on(r2) ... on(rn) |

where r represents the spatial coordinate and spin. It should be noted that the Pauli exclusion
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principle is satisfied by the antisymmetry under the position exchange of any two particles,
\I’(rlv coey Piy ceny rjy s ] l.N) = —\I’(rly veey rjv cery Liy eeey rN)' (2-20)

Now the task is to find a set of @ which minimizes the total energy of the system under the
constraint that the each ¢ is normalized. This can be done by using the Lagrange multiplier

method,
z ((H) S dr|¢.-|2) =0 (2.21)

where \; are the Lagrange multipliers. It reduces the many-body Hamiltonian into the

one-electron Schrédinger equation of the form,

2

[—-V2 . Vm(r)] Si(r) + Z/dr:l%( )] i) = 3 /d ,M 6;(r) = ei(rs)-
r'| jomet -

(2.22)
The first and second terms are single-particle kinetic energy and potential energy due to an
external confinement. The third term, called the direct or the Hartree term, is the electro-
static potential due to the charge distribution of all electrons. The infinite self-interaction
energy at j = i is canceled by the fourth term. The fourth term, denoted as the exchange
or the Fock term, stems from the inclusion of the Pauli exclusion principle. The exchange
term only sums over states with spins which are parallel, and it represents the effect of the

spatial avoidance of particles having the same spin. This ends up reducing the energy cost,

and so the sign of exchange energy is negative. The calculation of the Hartree-Fock equa-
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tion proceeds by determining the direct and exchange interaction terms in a self-consistent
manner. The largest source of error comes from the absence of the correlation effect between
electrons.

Density functional theory is also a widely known technique to deal with many-body
systems. We introduce this method following Ref. [26]. The approach starts with two
theorems proved by Hohenberg and Kohn [78]: (1) the electron density in the ground state
energy is a functional of a given potential, and (2) the potential is a unique functional of
the electron density. This leads to the statement that the ground state energy is given by
a minimum of the total energy functional with respect to electron density variations. The
ground state functional consists of five terms: kinetic energy, potential energy due to the
external confinement V. (r), Hartree energy, exchange energy, and correlation energy. The
explicit functional forms of the kinetic, exchange, and correlation energies are not known.

However, the kinetic energy is simply expressed by the quantum mechanical operator,
h? 2, 12
T = 2—m/dr2i:lv &l (2.23)

When one requires an explicit functional for T, the Thomas-Fermi approach gives an ap-

proximate form

Tin] = g(3w2)2/3 [ den (o), (2.24)

where the square bracket represents that the quantity is a functional of its argument function,

and n(r) = ¥, |#;|? is the electron density. Since the Thomas-Fermi approach is semiclassical,
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it only captures an averaging behavior and misses some quantum mechanical fluctuations;

see later chapters. The confining energy and the Hartree energy are given respectively by

Eealn] = / drn(r) Vg (r) (2.25)
Euln] = / dd'"l(:)_"f_fl') (2.26)

The difficult part is to include the exchange and correlation energy functionals. Kohn and
Sham [79] developed the method called the local density approximation (LDA) which de-
scribes the ground state functional with the approximate exchange and correlation energies.
In LDA, exchange and correlation energy contributions are combined as E,.[n], and the ap-
proximation is carried out as follows. First, they make the assumption that the exchange
and correlation energy in the ground state is represented by €.(no) for each electron, where
ng is the uniform electron gas density. Then, the exchange-correlation energy for .V electrons

becomes

Excln] = [ drnoese(no). (2.27)

The crucial point is that they replaced this uniform electron gas density with an inhomoge-

neous density n(r),

Byeln] = [ den(r)ecc(n(r))- (2.28)

This approximation is good as long as the density n(r) is slowly varying function of position.
In fact, it was found that this approach approximates well even in atoms and solids where

the density changes significantly. Therefore, the total energy functional is given by the sum
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of all the contributions

Eioi[n] = T[n] + Eex[n] + Eu[n] + Ex[n]. (2.29)

The ground state energy is obtained by minimizing this functional under the constraint

N = [drn(r). Using the Lagrange multiplier \,

é
ggg‘ [Etot. - A/dr'"'(’»')] =0, (2.30)
the Kohn-Sham equation is derived,
h? _.
[—%Vf + ‘/;ﬂ'[n](r)] ¢i(r) = A\igi(r) (2.31)

where V.g is the functional derivative of E¢; + Ey + Ey.. One solves this equation by
a self-consistent technique. The advantage of the density functional approach is that the
correlation effect, which is missed in the Hartree-Fock method, is included. In addition,
the scheme allows one to compute a system containing few hundred particles. Since typical
quantum dots contain on the order of 100-300 electrons, this is considered to be the best
suited approach. A more detailed application and numerical procedures are described in

later chapters in the context of developing the Strutinsky energy correction method.
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Chapter 3
Random Matrix Theory

3.1 Introduction

In the study of the compound nucleus, Wigner [31-34] introduced in 1951 a theory for the
statistical fluctuations of neutron resonances. The approach is called random matrix theory
(RMT) since it describes Hamiltonians of complex system by matrices with randomly selected
elements. RMT was further developed by Porter [35], Mehta (36,37], Dyson (38|, and many
others. Instead of trying to calculate explicit individual eigenvalues and eigenfunctions, the
theory provides the means to study statistical behaviors of systems. Since it is practically
impossible to obtain exact Hamiltonians of strongly interacting, highly excited many-body
systems, such as an excited nucleus, RMT assumes no information except for the symmetries
that the system carries. The statistics are obtained with ensembles of Hamiltonians which
belong to the same symmetry class, and it was found by Dyson (38] that random matrix
ensembles can be grouped into three fundamental classes.

Use of RMT is not restricted to the analysis of compound nuclei. The quantum mechan-
ical behavior of small metals, the sequence of zeros on the critical line of the Riemann zeta
function, and the statistical aspects of chaotic dynamical systems, are among others studied
in the context of RMT. The application of RMT to other fields is greatly dependent on
two major breakthroughs. One is the Bohigas-Giannoni-Schmit conjecture [64] connecting
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RMT to the statistical behavior of quantum mechanical systems whose classical counterpart
is chaotic, and the other is the supersymmetry method developed by Efetov [39]. The ap-
plication of RMT to chaotic systems will be discussed in section 3.3. Reviews of RMT can
be found in Ref. [109,112]. Use of RMT in nuclear physics is discussed in Ref. [65], and

applications to quantum dots are given in Ref. [62,136].

3.2 Gaussian Ensemble

The study of the RMT is based on the assumption that the Hamiltonian of some complex
quantum system is represented by a large NV x N matrix which consists of random ele-
ments, and ensembles of such matrices give a description of statistical fluctuations of the
system. According to Dyson [38], the matrix ensembles are always classified into three dif-
ferent types, depending on the underlying symmetries. They are denoted as orthogonal,
unitary, and symplectic ensembles. For systems having both time-reversal and rotational
symmetries, the Hamiltonian matrix is real symmetric and belongs to the orthogonal group.
For systems breaking time-reversal symmetry, the Hamiltonian matrix is complex Hermitian
and belongs to the unitary group. For systems which preserve time-reversal symmetry but
break rotational symmetry and have half-odd integer angular momentum, the Hamiltonian
matrix is real quaternion and belongs to the symplectic group. The real quaternion matrix

is 2N x 2N matrix, and if it is considered as NV x N blocks of 2 x 2 matrices, each block

30



matrix q is constructed by

q = aol + i(a;01 + a202 + a303) (3.1)

where the coefficients a; are real and o; are the Pauli matrices,

o = y O = , O3 = . (32)
In all three ensemble classes, each matrix element of Hamiltonian has different number of
real parameters. These number of components are 3 = 1,2,4 for orthogonal, unitary, and

symplectic respectively. For example, the Hamiltonian matrices for .V = 2 are

a c¢
H = (B=1) (3.3)
\ c b
(o -
H = (8=2) (3.4)
\ 2* b
( a 0 zy zz\
0 — E ®
H = R N7 I (3.5)
Iy —<2 b 0

where a, b, c are real and z, z, z; are complex numbers.
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Consider the similarity transformation H' = W-'HW. The definition of a Gaussian
ensemble requires that the transformed matrix H' must belong to the same ensemble as H
does. If W is any real orthogonal matrix (W-! = WT) for 8 = 1, the ensemble is called
the Gaussian orthogonal ensemble (GOE), if W is unitary (W1 = W) for 8 = 2, the
ensembile is called the Gaussian unitary ensemble (GUE), and if W is symplectic (see below)
for 3 = 4, the ensemble is called the Gaussian symplectic ensemble (GSE). In addition,
for the GOE, the matrix elements H,,,,m < n must be statistically independent and for
GUE and GSE, linearly independent components must be statistically independent. By
components we mean a,b in H,, = a + ib for GUE, and aqo, ...,a3 in q = aol + i} ; a;o;
for GSE. For each ensemble, the components are randomly selected real numbers with a
Gaussian distribution. The symplectic matrix is defined as follows: a matrix A is symplectic

if ATKA = K where K is the antisymmetric orthogonal matrix.

3.3 Chaotic Systems and Random Matrix Theory

The meanings of “complex system” and “large number of interacting particles” were not
clearly defined by Wigner or Dyson for the validity of RMT. Based on the conjecture made
by Bohigas, Giannoni, and Schmit [64], applicability of RMT has been broadened to study
“single-particle chaotic systems”, and a large number of numerical studies has supported the
validity of RMT in such dynamical systems [112].

Although there is no explicit manner to characterize the irregularity within quantum

systems, their classical analog is used to determine the irregularity or the degree of chaos
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of the system. Classical dynamical systems range from integrable (the most regular) to
hard chaos (the most irregular). For integrable systems, such as circular billiards (a billiard
represents a system confined by infinite potential boundary; inside of the wall, the motion of
particle is free propagation), with d degrees of freedom, there are d constants (or integrals)
of motion including energy conservation. For fully chaotic systems, stadium billiards for
instance (a stadium billiard consists of two parallel straight lines with semi-circular end
caps), the constants of motion do not exist except for the energy. Consider two neighboring
trajectories with slightly different initial conditions. While in the integrable system, the two
trajectories linearly separate from each other, in the fully chaotic system, they exponentially
diverge in time. In between, the extreme dynamical limits, there exists an intermediate
regime called mixed systems. In such systems, as the word indicates, the behavior is mixed
between integrable and chaotic motions depending on the initial conditions. The three-body
interacting system, or simple planetary systems, falls into this category.

According to Bohigas [64], the statistical study of spectral fluctuations of quantum sys-
tems exhibit a signature of the corresponding classical dynamics. More importantly, the
fluctuation statistics of irregular quantum systems can be investigated within the context
of RMT, depending on the system’s symmetry. Although RMT does not reproduce the
system dependent energy spectrum or eigenstates, it describes the local fluctuations of the
spectrum. Suppose a confining potential of a quantum system has no rotational symmetry,
for simplicity, the system having time-reversal symmetry is described by the GOE statistics,

and if time-reversal symmetry is broken, the GUE statistics represents the spectral fluctu-
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ations. To illustrate this, let us consider two-dimensional rectangular billiard and coupled
quartic oscillator confining systems V = a(z*/b + by* + 2Az%y?) in time-reversal regime.
Although there are several statistical measures available, the nearest-neighbor spacing and
the number variance statistics are suffice for this purpose; see Appendix D. The rectangular
billiard system has conserved momenta in the x and in the y direction (or energy and one of
the two momenta) as integrals of motion, and it is known as integrable system (since there
are two constants of motion for a two-dimensional system). The coupled quartic oscillator
system has the flexibility of adjusting the degree of chaos from near integrability to pure
chaos by tuning the coupling of two modes. The coupling strength is set to A = —0.35 and
—0.55 to represent mixed and chaotic dynamics respectively. In Fig. (3.1), the statistics of
spectral fluctuations are plotted. The nearest-neighbor spacing statistics for the rectangular
billiard follows the Poisson statistics precisely. For the time-reversal invariant (TRI) quartic
oscillator, the systems in chaotic regime captures the GOE statistics in small spacing do-
main, where the probability P(s) is linear in spacing s, but the distinction from the mixed
regime is not obvious in other spacing domain. On the other hand, the number variance
statistics clearly show the difference between two statistics: while the chaotic case follows
the GOE curve, the mixed case is located in between the Poisson and the GOE statistics as
expected from the behavior of “mixed” system. With the time-reversal symmetry breaking
term added to the quartic oscillator, the spectral fluctuation statistics are compared to the
previous TRI case in Fig. (3.2). The number variance statistics captures well the behavior

of spectral fluctuations of the time-reversal non-invariant (TRNI) quartic oscillator system



with GUE statistics. The study of the quartic oscillator systems will be discussed more in

later chapters.
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Figure 3.1: Statistics of spectral fluctuations. Figures in left column represent the nearest-
neighbor spacing distributions, and figures in right column are the number variance statistics.
Top: Rectangular billiard. Middle: two-dimensional coupled quartic oscillator (time-reversal
invariant) with coupling constant A = —0.35 (mixed). Bottom: same quartic oscillator with
A = —0.55 (chaotic). Histogram (or solid line) is obtained from numerical data, dashed line
is reference the GOE statistics, and dotted line is the Poisson statistics. For more detailed
statistical studies of the quartic oscillator, see Ref. [114].
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Figure 3.2: Statistics of spectral fluctuations. Figures in left column represent the nearest-
neighbor spacing distributions, and figures in right column are the number variance statistics.
Top: time-reversal invariant two-dimensional coupled quartic oscillator with coupling A =
—0.55. Bottom: Time-reversal non-invariant coupled quartic oscillator with A = —0.80 and
symmetry breaking strength ¢ = —1.0. Histogram (or solid line) is obtained from numerical
data, dashed line is reference the GOE statistics, and dotted line is the GUE statistics.
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Chapter 4

Semiclassical Density Functional Theory:

Strutinsky Energy Corrections in Quantum Dots
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4.1 Introduction

A recurring problem in modern physics is how to add quantization effects to a basically
successful macroscopic theory. This question arises particularly in the semiclassical regime—
large quantum number—where the quantum effects are often corrections to the essentially
classical macroscopic physics. Perhaps the best known example starts with the Thomas-

Fermi theory of the atom [40], which is macroscopic in essence, and then evaluates the
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2Department of Physics, Duke University, Box 90305, Durham, NC 27708-0305, USA
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contribution of electronic shell structure to the ground state energy (40-42]. The very nat-
ural result that the shell contribution is given by the quantized levels of the self-consistent
Thomas-Fermi potential has been used extensively [43-45]. However, it has only been in
recent decades, starting with the work of V. M. Strutinsky [46-49)], that a systematic way of
answering the recurring general problem has been developed.

Our own immediate interest is in quantum dots—small electrically conducting regions
in which the quantum properties of the confined electrons are important [50]—and our aim
here is to treat quantum corrections to the ground state energy of these dots by further
developing the Strutinsky method.

Quantum dots can be formed, for instance, by gate depletion of a two-dimensional electron
gas (2DEG) in a GaAs-AlGaAs heterostructure. Because of the high quality of this material
and interface, the mean free path of the electrons far exceeds the size of the quantum
dot. One can view an electron as propagating ballistically within a confining potential
created by electrostatic gates patterned on the surface of the heterostructure. For transport
measurements, dots can be coupled weakly to leads; when the conductance of each lead falls
below 2e?/h, electron transport through the dot occurs only by tunneling, and the number
of particles within the dot becomes quantized. In this regime, the conductance is suppressed
due to the electrostatic energy associated with a localized charge [50], an effect known as
the Coulomb blockade (reported in 1951 by Gorter [51]). When the dot potential is tuned
by a gate voltage so that adding one electron costs no energy, a large conductance peak

appears [50]—though the electrons must still tunnel from the leads, there is no additional
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electrostatic barrier to conduction. Sweeping such a gate voltage produces periodic Coulomb
blockade oscillations of the conductance through dots (50,52, 53].

The Coulomb blockade is a classical effect observable in a broad temperature range,
kT < €*/C, where C is the total dot capacitance. Over most of this range, both the
spacing and height of the peaks is constant—the spacing is €2/C and the height is given
by the resistance of the two tunneling barriers acting in series. However, there is a low
temperature regime below a few hundred millikelvin for which kgi" < A, where A is the
mean single-particle level spacing of the isolated dot. There, quantum interference and
coherence become important [50]. The Coulomb blockade peaks grow as the temperature
decreases, and novel fluctuation properties emerge involving both the peak heights [54-56]
and spacings [57-61]. The spacings give information about the ground state energies while
the heights involve the magnitude of the wavefunction near the levels.

With some success, random-matrix-theory (RMT) based approaches {62] have been used
in order first to predict {63] and then to explain the statistical properties found. In the
simplest approximation [57], known as the constant interaction model, the ground state
energy of the dot is expressed as

e2N? XN

EN) =S5 +Y & (4.1)

i=1

where NN is the number of electrons in the dot and ¢; are single-particle energies. The first
term is the classical charging energy; the second is the total energy of a system of non-

interacting quasi-particles. Supposing that the single-particle classical dynamics within the
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dot is chaotic, the Bohigas-Giannoni-Schmit conjecture applies [64] and implies that the
single-particle quantum properties follow RMT. It is well-established that RMT predicts
repulsion amongst the ¢; and Gaussian random behavior in the eigenfunctions [65]. Within
this model, the conductance peak height statistics are in good agreement with experimental
results {54, 55] after also incorporating non-zero temperature effects and interference mod-
ulations due to periodic paths coupled to the leads [63,66,67]. On the other hand, it is
found [57-61] that the fluctuations in the peak spacings are considerably larger than the
predictions [57,68,69], and there is little evidence for the level repulsion or electron spin de-
generacy expected from a single-particle-like approach [61,70]. These discrepancies between
the predictions of the constant interaction model and the observations point to the need for
a quantum treatment of the electron-electron interactions, and, in particular, have triggered
a number of studies based on Hartree-Fock calculations [71-73], or density functional theory
in the local density approximation (LDA) [74-77].

In nuclear physics, it has long been known that the dependence of many-body ground
state quantities on particle number can be decomposed into an average and a fluctuating
part. While the average part varies smoothly with particle number, the fluctuating part
reflects the shell structure of the system. A similar decomposition is possible for any finite-
size interacting fermion system. The smooth part comes basically from the bulk energy
per unit volume integrated over the finite-size system, and the oscillating contributions
come from quantum interference effects explicitly caused by the confinement. By supposing

that the smooth part is known while the unknown oscillatory contribution is a correction,
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Strutinsky introduced in the late 60’s a physically motivated systematic approach to obtain
the shell corrections [46,47]. Introductions to the Strutinsky shell correction method and its
application through LDA to metal clusters can be found in Ref. [48,49].

Strutinsky’s shell correction method is essentially a semiclassical approximation. It rests
on the fact that the number of particles in the system considered is large, rather than on
the interaction between the particles being weak. (One must, of course, work in a regime
where the smooth starting point is basically valid.) Since the quantum dots in which we
are interested contain on the order of 100 electrons, they are a perfect place to apply the
Strutinsky method. However, before doing so for a particular, realistic, two-dimensional
geometry, we shall in this paper limit ourselves to a formal discussion of this method in
conjunction with a one-dimensional illustrative example. In spite of the literature existing
on this subject [49], we find it useful for two main purposes. First, the discussion and resulting
expressions are noticeably simpler for quantum dots than for nuclei. This occurs because
the existence of a smooth confining potential in the dot means that gradient corrections to
the smooth density are not needed to confine the system at the zeroth-order (classical-like)
approximation. The effect of these gradient terms can therefore be included in the first-order
“shell” corrections, simplifying both the zeroth-order calculations (no gradient terms) and
the first-order terms (no corrections to the Weyl part).

Our main purpose, however, is to take advantage of the fact that we use density functional
theory (DFT) rather than Hartree-Fock as a starting point, the former being presumably

better suited to deal with the long-range Coulomb interaction present in quantum dots than
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the latter. While first-order Strutinsky corrections to a DFT description of nanoparticles
has been considered in Ref. [48], our focus is to use this approach to derive and discuss in
detail the second-order “residual interaction” terms of the Strutinsky method. By residual
interaction we mean the weak interaction between Landau quasi-particles that comes from
dressing the bare electron added to the quantum dot. In particular we will show, and
illustrate, how these terms are related to the screened Coulomb interaction.

The remainder of the paper is organized as follows. The Thomas-Fermi and density
functional theories are summarized in the next section, establishing our notation. Section 6
contains the Strutinsky method applied to density functional theory. This is the core of the
paper; in particular, the relation of the second order terms to the screened Coulomb potential
is derived. Section 7 recalls how the residual interaction terms contribute to conductance
peak spacing distribution. Section 8 compares the whole approximation scheme to numerical
calculations of a simplified model: interacting electrons in a one-dimensional quartic oscilla-
tor. Finally, we comment on the relationship between the Strutinsky development and the

constant interaction model, and possible applications of the method.
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Chapter 5

Density Functional Theory

The Hohenberg-Kohn theorem [78] states that for a system of interacting electrons in
an external potential, Ve (r), there exists a functional, Fuks[n|, of the density of electrons,
n(r), such that: i) the density, n,(r), corresponding to the ground state of NV particles is an

extremum of Fyxs[n] under the constraint that the total number of particles,

Nln,) = [ dr ny(r) , (5.1)

is fixed, and ii) Fuks[n,] is the total energy of the system. The explicit form of the
Hohenberg-Kohn-Sham functional is not known [78,79]. In practice, one must be satis-
fied with approximations. We describe here first a generalized Thomas-Fermi approach and,

second, the case when an explicit form of the density functional is assumed.

5.1 Generalized Thomas-Fermi Approximation

([Semi]Classical Level)

It is convenient to view the density functional as the sum of three parts: a classical charge
contribution, the kinetic energy, and the unknown exchange-correlation functional which

accounts for the balance [79,80]. The first part is simple: the energy of a system of classical



charges confined by an external potential, Ve, is

E[n] = Eext[n] + Ecou[n] (5.2)

where

benln] = [ n(r)Veu(r)dr

gcoul[n] = //nl(:.):li,rl,)d dr’ . (5-3)

For the kinetic energy, in the Thomas-Fermi approach the Pauli exclusion principle is
introduced semiclassically by employing the idea that one quantum state occupies a volume
(27h)% in phase space. This implies that if many electrons want to be at the same place, they
can do so only by increasing their kinetic energy. This gives the Thomas-Fermi approximation

to the kinetic energy part of the density functional, 7T1r[n], expressed as

1 p°
W) = Gapy /9(5—2—m) dp
trp(n) = /: e(v)dv

Treln] = [ tre(n(r))dr (5.4)

where d is the dimensionality of the system, © is the Heaviside step function, ttf is the
kinetic energy density, and v(€) is the number of states per unit volume with energy less

than e. An additional factor of 2 in v(¢) is required if the electron spin degeneracy is taken
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into account.

Finally, the effect of exchange and correlation is included through a term &.[n]- In
practice, an explicit form for this functional must be taken. For example, if the electron
density is a sufficiently slowly varying function of position, one can approximate £[n] by
taking the exact results for the uniform electron gas at the local density integrated over
space, the well-known local density approximation (LDA).

Within this approximation, then, the density functional is
fGTF[n] = T’[’F[n] + ggog[n] (5-5)

where

Eot[n] = Eexi[n] + Ecoui[n] + Exc[n] - (5.6)

The ground state energy and its electron distribution are obtained by minimizing F¢tr under

the constraint (5.1), yielding the self-consistency equation

%Tl[ﬂcwl(l‘) + Veg[ngrrl(r) = perr (5.7)

with the effective potential

et o)) 8)

Veﬂr[n](r) =

Notice that to make use of Eq. (5.7), one must have an explicit form for & in order to take

the functional derivative in Eq. (5.8).
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We call this approach “generalized-Thomas-Fermi” (GTF) because it uses the Thomas-
Fermi approximation for the kinetic energy but retains macroscopic aspects of exchange and
correlation. In particular, the short-range effects of exchange-correlation in a uniform system

can be included.

5.2 Kohn-Sham Equations

(Quantum Mechanical Level)

In standard implementations of density functional theory (DFT), the kinetic energy is treated
quantum mechanically rather than (semi)classically as in GTF. To accomplish this, in the
Kohn-Sham scheme [80-82] one considers the problem of N noninteracting electrons which
has exactly the same density as the original interacting problem. The quantum mechanical
kinetic energy for this auxiliary problem is then used to develop an approximation to the
true kinetic energy.

The auxiliary noninteracting problem defines N orthogonal functions {#:(r), ..., on(r)}

which are solutions of a Schrodinger equation
h2
(—2—m—V2 + Veg'[n](l')) q’),-(r) = €.‘¢i(l') . i=1,...N (5.9)

where the effective potential is again defined by Eq. (5.8). These are the Kohn-Sham equa-
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tions [79]. In terms of these orbitals, the electron density is

N
n(r) = Z s (r) [ (5.10)

and the kinetic energy of the noninteracting problem is

N .
Torr(n] = D (#:lT|¢:)
i=1
h2 N
= — |V:(r)|%dr . (5.11)
2m / xz=:l
Thus, the density functional becomes
Forr[n] = Torr([n] + Ewe(n] (5.12)

where £, [n] includes interaction corrections to the kinetic energy [Eq. (5.6)]. Equa-
tions (5.8)-(5.10) are the set of self-consistent equations for finding the electron density,
nprr(r), and then the ground state energy Eprr = Fprr{nprtl-

As in the discussion of the GTF above, in order to actually solve the Kohn-Sham equa-
tions, an explicit form for the exchange-correlation functional is required. The simplest case
is when &, is an integral over space of a function (not functional) of the local density; this
is the well-known local-density approximation (LDA) [80-82]. But other more complicated

explicit forms are possible, for example the generalized gradient corrections to LDA [80,82].
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Chapter 6

Approximate Ground State Energy:
The Strutinsky Energy-Correction Method

6.1 Expansion of the Density Functional Theory Ground

State Energy

In this section we develop an approximation to Epgr[nprr] starting from the solution of the
generalized-Thomas-Fermi equation, ngrr. The main motivation is to develop a physical
interpretation of the difference between these two approaches in finding the ground state
energy. In addition, the approximation is of interest numerically for large problems since it
involves a self-consistent solution of only the GTF equation rather than the more involved
Kohn-Sham equations. We use the method introduced by V. M. Strutinsky [46, 47] origi-
nally in the context of a Hartree-Fock rather than density-functional approach. His method
describes the interacting system self consistently, first with the quantum interference effects
turned off, and then by introducing them perturbatively. As discussed in the introduction,
the idea is to add the “oscillatory” effects caused by interference in the confined system
to a “smooth” essentially macroscopic description—these effects are essentially the Friedel
oscillations [83] familiar in the context of impurities or surfaces.

To study the role of quantum interference effects in the DFT ground state energy, we will

49



first show that the generalized-Thomas-Fermi result is a [semi]classical approximation to the
DFT energy. The GTF approximation does, of course, contain some quantum mechanics—
notably the Pauli exclusion principle which gives rise to the Fermi surface—and so is not
truly classical. But only the simplest local quantum effects are present in GTF rather than
the effects of interfering paths that one expects in a true semiclassical theory, hence our
characterization of GTF as “[semi|classical”.

To see this clearly, we introduce a convenient notation adapted from the semiclassical
treatment of single-particle problems: it is customary there to express the density of states
as a sum of a smooth term slowly varying in energy, called the Weyl part, and a term which
varies rapidly in energy (on the scale of the mean level separation), called the oscillatory
part [84]. For a system governed by the Hamiltonian H[V] = p?/2m + V(r), where the
potential is as yet unspecified, one can define the probability density of N independent
particles

N
n{Vi(r) = 3 leu(o)l? (6.1)

in terms of the eigenstates {¢;} of H. We also define the Weyl part of n[V] by

Y [V](r) = @#)7 [o s - p?/2m - v(r)] dp (6.2)

where " must be chosen so that N = [n"(r)dr. Note that n"[V](r) is smooth in that

it neglects quantum fluctuations in much the same way that the GTF approximation does.



With this notation, one can derive the useful relation

0Trr

SE [V VI (1) + ViE) =¥ (6.3)
Indeed, using
2T fn)(e) = e(ne)) (6.4

Eq. (6.3) reads e(n"[V](r)) = " — V'(r). Applying the function v introduced in Eq. (5.4)
to both sides of the equality gives the definition of " [V](r), Eq. (6.2).

Recalling that V.g[n] is defined as the variational derivative of & (to be completely
clear, it is not the inverse of n[V.¢]), we see that the self-consistency equation (5.10) which

defines npgr is

nper(r) = nfVeg[nprr]](r) - (6.5)

Similarly, Eq. (5.7) which defines ngtr can, in applying the above prescription, be put in

the form

narr(r) = n"[Veg[norell(r) . (6.6)

These equations do not signify that ngrr is the Weyl part of npgr; however, they do indicate
that if one neglects the quantum interference terms (i.e. the difference between the exact
particle density and its Weyl part), then the definitions of ngtr and nprr become equivalent.
It is in this sense that ngtF is the [semi]classical approximation of npgr.

Supposing ngtr(r) and Egtr = Ferr[ncTr| known, we now seek to evaluate the correc-



tions to the Thomas-Fermi energy,

AFE = Eprr — EG1F » (6.7)

up to second order in

on= NpfFT — NGTF - (6.8)

For this purpose, we first introduce the quantities

ii(r) = n[Veg[ngrr])(r)

a%(r) n" [Veg[ncte]](r) = ngrr(r)

n*(r) = n(r)-a"(r). (6.9)

Note that once Veg[ngTr] is known, all of these can be computed through the diagonalization
of the known single particle GTF Hamiltonian. As is well-known, the sum of the eigenvalues
of the Kohn-Sham equations, &p[V] = ¥ ¢;, does not give the total energy of the N

particles because of double counting of the interaction energy, but rather [85]
Eprr = Erp[Ves[norr]] — / dr Veg[nprrl(r) norr(r) + Ewe[noFT] - (6.10)
To proceed further, we use the relation proved in the Appendix B

EiplV + V] = EplV] = %/zSV(r)(n(r) +n'(r)) dr (6.11)
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where n(r) = n[V](r) and n'(r) = n[V + 6V](r) and which is correct through second order
in the changes. Upon inserting V = Vig[ngTr| and V + 8V = Vg[npgr]|, and thus n = /2 and

n' = nppr, the first term on the right-hand-side of Eq. (6.10) becomes

ErolVealnoerl] = EnplVealnorel] + 5 [ droVea(®)(morr(c) +4(r)  (6.12)

where 0V.g = Vg[nprr] — Vest{ngrr]- Similarly, the second term in Eppr(nprr] is

/ Veg[norr](r)norr(r)dr = / Veg[neTrl(r) nare(r) dr
+ [ Vealnorel(x) on(r) dr (6.13)

+ /JVett(l‘) nprr(r) dr .
Finally, the third term is
Exnlnoer] = Enlncre] + [(Vaalnore](x) + 8Vea (r)/2)6n(r)dr (6.14)

with corrections which are third order in én.

Combining all the terms together, we obtain

Eorr = EplVerlnorell - [ nore(r) Vialnrel(r) dr + Ewlnore]

+ % / 6V.q(r) A% (r) dr . (6.15)
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In order to express directly the difference between the DFT and GTF ground states, it is

convenient to use

Ecrr[netr] = Trr{ngtr] + Ewee[nerr] (6.16)

for £ In order to simplify the last term in Eq. (6.15), note that 1°¢ is of order dn, and
that therefore one only needs the first order variation of the effective potential, §V g(r) =
J(6Veg /On)[ncTr](r, ¥')on(r’)dr, to obtain Eppr correct through second order. Thus the

final expression for the Strutinsky energy correction is
Eprr =~ EgtF + AEM + AE® (6.17)
where the first and second order correction terms are

AEY = & [Veglngrsl] - / nctr(r) Veg[ngrr](r) dr — Trr[ncrr (6.18)

AE® = % [] ﬁ“‘(r)ét‘s—ﬁg[ncwl(r, r') n(r) drdr’ . (6.19)

In this approach, the DFT ground state energy is, then, the sum of a classical contribution—
the generalized-Thomas-Fermi result Egrp—and two quantum contributions—AE() and

AE®_ We now discuss and interpret these two correction terms.



6.2 Interpretation of the First-Order Corrections

The first-order correction is simply the oscillatory part of the single particle energy for a
system of N electrons evolving in the potential Vg[ngrr]. Indeed, the Weyl part of £;,[V]
is

1
(2nh)d

2 2
AUE [ +V(®) 0" - 2 - V(r))dpds (6.20)

where p% is fixed by N = [n"[V](r)dr. Separately integrating the kinetic and potential

energy terms for V = V g[ngTr], one obtains

/“w ~VeglngTrl(r) dy
0

e e+ / n" [Vignare)}(r) Veg[narr)(r) dr . (6.21)

EX [Veglngrr]] = / dr -

In the first term one recognizes the Thomas-Fermi kinetic energy, Trr[ngrr|, while in the

second term n" [V g[ngtr]] = ngrr. Thus the first-order Strutinsky correction is
AEWY = E[Vegnarrll — Ely [Verlnarrl] = £y [Ver[narr]] - (6.22)

The leading quantum corrections to GTF are found, then, by quantizing the single-particle
levels in the GTF self-consistent potential: this is a very natural result which, in fact,
was used extensively in atomic and nuclear physics [42-45] before it was first justified by

Strutinsky [46,47].



6.3 Interpretation of the Second-Order Corrections

The second-order correction, Eq. (6.19), requires further work: this form is not useful because
it expresses AE® as a function of the unknown dn. A second equation is necessary for us to
determine dn. Note that this is not the case for AE(} which is written completely in terms
of ngrtF.

The required second equation is obtained by relating én to the oscillatory part of n =
n[Veg[ncTr]] which, of course, is known since it depends only on ngrr. We start with the

two equations

YL
J_ZF[nGTF]'*'VeH[nGTF] = UGTF (6.23)
0T
T::[ﬂowp'r]-i-‘/eﬁ["owr] = pher - (6.24)

The first equation here is the definition of ngrr, and the second one follows directly from the
general relation (6.3). Now expand nppr about ngrr in the second equation and subtract
the first one from it. In the term involving V.4, n appears. However, in the kinetic energy
term, the density difference is n¥tr — ngrr = (NpFr — NeTF) — (MDFT — NBFT) = 0N — NFET.
To close the equation we must relate n%gr to ngrr. This is possible because in an equation
for én, which is by definition first order in corrections, only the first order part of the other
quantities need be kept. Thus, we can approximate ng§y by similarly expanding npgr about
ngrr, yielding

nger = (nprr — nppr) = (i — neTF) = 2% . (6.25)



The combination of these results gives the closure equation

‘523" (r,¥') (6n(r') — i%™(r')) = Ap (6.26)

Jieﬂ'
’ ’ ’ U
/dr—6 (r,r)&n(r)-ﬁ—/dr 3

where Au = pler — uctr is fixed by the condition [dn(r)dr = 0. This is an integral
equation for dn in terms of GTF quantities. If a numerical calculation of AE(? is needed,
the computational cost is relatively modest, largely the inversion of an operator.

One obtains a very natural interpretation of the second-order correction (6.19) by using
this closure equation. Consider the generalized-Thomas-Fermi problem, Eq. (6.23), and
suppose the external potential is slightly modified by the quantity 6V,,.(r). One thus obtains
a new solution of the GTF equation ngyy = ngrr + dngrr which would verify

Tre

on [nGre] + Verlngrel + 0Vex = pgrr - (6.27)

Subtracting Eq. (6.23) as before yields

dr'ézTTF (r,r') dngrr(r’) + dr’W—eﬂ(l', r') dngrr(r) + Ve = Ap . (6.28)
on? on

If we now choose the variation of the potential to be
Ve (T) = / dr’ (82Esoe /602 [ncrr|(r, ) 7°(r) (6.29)

dngTtr + 1% satisfies the same Eq. (6.26) as dn. This means that, at this level of approx-
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imation, dn is the sum of 71°° and the displacement of charges dngrr screening 7% in the

GTF approximation. Indeed, the definition of a screened interaction V;. implies
/ dr’ive—“(r, r)on(r) = / dr'Vi(r, v') n®™<(r) , (6.30)
on
and therefore that the second-order correction, Eq. (6.19), can be written
(2) _ 1 ! ~08c 1\ =08C[ ./
AE® = o / drdr’ 7% (r) Vi (r, ') 7% (r') . (6.31)

Thus the second-order correction is simply the energy of interaction between the ad-
ditional charge oscillations caused by the quantization, where the interaction is screened
because, after all, the “other” electrons treated in GTF are around. Note that V.. is the
screened interaction within the finite sized system, not in the bulk, and so includes boundary
effects [68]; under certain conditions, the bulk screened potential may be used [86]. More im-
portantly, while the screened interaction here does include exchange-correlation at the GTF
(macroscopic) level, the result (6.31) is a “direct-like” contribution while an “exchange-like”
term is missed. This is related to the deficiencies of the LDA-like treatment of DFT here;

presumably it could be fixed through a more sophisticated density functional approach.
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Chapter 7

Contribution of the Residual Interaction to Peak Spac-

ing Distributions

As an example of the utility of the Strutinsky method for adding quantization effects
to a macroscopic result, we turn to considering the spacing between peaks in the conduc-
tance through a quantum dot in the Coulomb blockade regime. The contribution of residual
interactions have been estimated for chaotic systems within a random matrix theory frame-
work [68,87-89]. There it was found to be small, but not too far from the scale necessary to
explain the failure of the constant interaction model. Here our ultimate aim is to evaluate
the effect of the residual interaction in specific model systems which often are not in a regime
where their quantum properties have fully converged to the purely statistical behavior found
in random matrix theory. Systems tend not to be purely chaotic, and even when chaotic,
still exhibit manifestations of short time dynamics in their eigenproperties. This can often
lead to important deviations from statistical limiting behaviors. We therefore briefly sketch
the relationship between the residual interaction and the Coulomb blockade peak spacings.

The position of a conductance peak as a function of gate voltage is proportional to the

change in the total energy of the system when an electron is added [52],

uv = E(N)—E(N-1), (7.1)



and the conductance peak spacing is proportional to the discrete inverse compressibility

XN = [N+l — BN (7.2)

= E(N+1)+E(N—1)-2E(N). (7.3)

For each of the ground state energies here we will insert the second-order Strutinsky ap-
proximation to the DFT energy. The first term, Egrr, is the ground state energy in the
generalized-Thomas-Fermi approximation, and is essentially the charging energy of the dot.
The first-order correction contains the single-particle quantization effects. In some sense
these two terms together constitute the same level of approximation as the much used con-
stant interaction model. In fact, more physics is included here since changes in the self-
consistent confining potential [69] are explicitly contained in the Strutinsky approach (89,
whereas due to the ad hoc nature of the constant interaction model, therein exists no in-
formation at all on the self-consistent potential. The second-order correction term, AE®?),

contains, then, the effects of the residual interaction.
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Chapter 8

The Quartic Oscillator: A Case Study

Let us now illustrate the above approach with a particular example. For the sake of sim-
plicity, we choose a one-dimensional model system consisting of IV electrons in the confining
potential V..(z) = z*/2 with the interactions governed by the one-dimensional Poisson
equation d?Viy[n](z)/dz? = —4mwe?n(z). This is a simple limit of a three-dimensional prob-
lem: the system is assumed to be invariant in the transverse directions y and z so that the
interactions are between planes of charge, but the medium is extremely inhomogeneous with
the transverse mass taken to infinity so that only one-dimensional quantum mechanics is

needed. Exchange and correlation effects are turned off; thus the interaction functional is
(> +]
Vine[n](z) = —21re2/ n(Z')|z — 2'|ldt’ . (8.1)
—-0o

Note that use of the 1D Poisson equation causes an interaction which grows with distance.
Use of the subscript “int” in this section, rather than “coul” above, is meant to distinguish
this case from the three-dimensional Coulomb interaction. We emphasize that our interest in
this simple model system is only as an illustration for better understanding of the Strutinsky
method.

We vary the electron charge e to see how well the Strutinsky scheme works for different

strengths of the interaction, e = 0.5,1.0 and 1.5 in units where i = m = 1. The electron
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spin degeneracy is not considered here. First, we perform generalized-Thomas-Fermi and
density-functional-theory calculations directly. Next, using the GTF results, we apply the
Strutinsky techniques to find approximate DFT results. Finally, these approximate results
are compared to the actual DFT values. Because of the neglect of exchange-correlation
here, the GTF approach reduces to true Thomas-Fermi and the DFT approach is simply the

coupled Schrédinger-Poisson equations.

8.1 Thomas-Fermi Numerical Calculations

For one-dimensional systems

2me

L [ o - p?/2m)d
vie) = 5= [ O(e—p*/2m)dp = Y (8:2)
and, thus, the kinetic energy term, Eq. (5.4), can be written explicitly as
n2h? oo 3
Tre(n] = o /;w n(z)’dz . (8.3)

The ground state density is obtained by solving the Thomas-Fermi equation [cf. Eq. (5.7)]

2R3
2m

1
ngre(z) + ‘2'1'4 + Viee[narFl(z) = patr (8.4)
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where we have used (6Trg/dn)[n] = e(n) = (72h*/2m)n(z)?. By differentiating twice and

using the Poisson equation, one obtains the second order differential equation

m2h? dPndrp(z)
2m dr?

+ 622 — 4me’ngrr(z) = 0. (8.5)

This can then be transformed into coupled first-order equations

n() = "%;Tr(f)

M)~ )

dya(x) 2m 2 2

M = (V@ -6 (86)

which can be conveniently solved. Because of the symmetry of the system, dn/dzr = 0 at
the origin and one needs only specify the density at the origin as an initial condition. One
repeats solving Eq. (8.3) adjusting ngrr(z = 0) on each iteration until the normalization
condition N = [ngrr(z)dz is satisfied. Once the electron density ngtr(z) is found, the

ground state energy is obtained from
Egtr = Trr[narr| + Eex[narr] + Einc[naTr], (8.7)
where T7F is given in Eq (8.3) and
Eext[ncTF] = 2 /0 = nGTp(I)—;-I4dZ
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Emlnore] = 2-3 [ nore(e)Vimlnorel(@)dz . (838)

The electron densities ngtr for N = 5,10 and 20 with e = 1.0 are plotted in Fig. 8.1(a)
and the effective potential, Veg[ngrr] given by Eq. (5.8), in Fig. 8.1(b). All three cases show
the same basic structure which can be simply understood as follows. Without the interaction
(e = 0), the density would have one maximum at the origin since the external potential has
a minimum at the center. Once the interaction is turned on, electrons repel each other and
avoid the center, making two maxima in the density. Though not pictured, the larger the
value of the electron charge e, the lower the central valley in the density, and the more the
density maxima move away from the origin. As intuitively expected, the minimum points in
the effective potential correspond to the maximum points of electron density, and increasing

e increases rapidly the bimodal nature of the density.

8.2 Quantum Numerical Calculations

The numerical calculation of the DFT energy requires self-consistently solving

" 2mdz?
N

2
( h~ & +ve.f[n1(z)) 6:(x) = 6:(2)

|pi(z)|? (8.9)

n(z) = 2.
Vegt[n](z) = %1:4 — 2me? /_ = n(z')|z — 2| dr’
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Figure 8.1: The electron densities (upper panel) and effective potentials (lower panel) for
interacting particles in a quartic potential. The results for both the Thomas-Fermi (dashed)
and coupled Schrédinger-Poisson (solid) approximations are given. The electron charge is
e = 1.0, and the electron number is N = 5,10, and 20 from bottom to top in upper panel,
top to bottom in lower panel. V.g[ngrr] and Veg[nprr] coincide so well that one cannot
distinguish the differences here.
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which are the coupled Schrédinger-Poisson equations. We start the self-consistent iterations
with the Thomas-Fermi potential Veg[ngrr]. At each iteration, we first diagonalize the
Hamiltonian H = p2/2m + V.g(r) expressed in the basis of Hy = p?/2 + z*/2. From the
eigenvalues and eigenvectors of H[V.g[n]], we can construct the electron density and the
corresponding effective potential. Self-consistency is evaluated by comparing the effective
potentials V.94 and VN*" before and after each iteration (or equivalently the densities n°'¢
and nNev),

Because of the well-known instability of the Poisson equation, one cannot simply use the
output from one iteration, V¥, as the input to the next [90]. Instead, we feedback only

part of the output

Veg® Mo oo = VR4 + oV - Vig?), 0<a <1 (8.10)

where a is initially set as 0.5. If the self-consistency is not improved, a is reduced by half
and the iteration redone so that improvement is guaranteed for every iteration. We repeat
this until the density reaches self-consistency,

max |nN*¥(z) — n%(z)| < 107°. (8.11)

2| SZmax

We require self-consistency in the density rather than the potential because the overall
magnitude of the density does not change significantly as N increases.

Once the self-consistent density and effective potential are obtained, the Weyl part of the
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density, nf¥, as well as the chemical potential p}jr can be calculated from Eq. (6.2); the
oscillating part of the density follows from njgr = nprr — nWer. Finally, the self-consistent

ground state energy is obtained using

Torr[norr] = Eip[Ver[norT]] — 2 /om nprr(Z) Veg[norr)(Z)dZ (8.12)

and the same expressions for £ and &, as in the Thomas-Fermi calculation, Eq. (8.8).
We have used the above relation for the kinetic energy instead of the definition since the
eigenvalues are more stable than the eigenvectors in the numerical calculations.

The quantum electron densities for .V = 3, 10, and 20 are superposed in Fig. 8.1(a) for
electron charge e = 1.0. One can see the quantum mechanical oscillations whose number of
peaks corresponds to the electron number N. Note the decreasing oscillation amplitudes with
increasing particle number, as well as the tunneling outside of the potential wall at the clas-
sical turning points. The effective potentials, superposed in Fig. 8.1(b), are indistinguishable

from the corresponding Thomas-Fermi potentials.

8.3 Strutinsky Energy Corrections

In order to find the approximate ground state energy using the Strutinsky method, we start
with the Thomas-Fermi density and potential, calculated above, and quantize in this poten-
tial by solving the Schrodinger equation (—%% + ‘/eﬂ'['nGTF]) ¢; = €;¢; for the eigenvalues

and eigenvectors.
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The first-order energy correction is given by Eq. (6.22); in our example, the expression

for the Weyl part reduces to

v2m

81‘:,’[Veg[n(;'rp]] = 2m

[ + 2Valnerel(z) Vi ~ Vealnorel (@) dz . (8.13)

The second-order energy correction, from Eq. (6.19), is

AE® = -zé /m / ” #(2)le — 2'|on(z)dzds’

4re? /om n%(x) {/:o(x - J:')Jn(:z:’)d:r'} dr . (8.14)

The required input én follows from Eq. (6.26). This equation can be simplified by noting,

first, for the kinetic energy term

JZ—Z;E[HGTF](L ') = 6;(:) [nerrlé(z — 2') . (8.15)

Second, for the term depending on Vg note that

/_ ~ 6(‘;2“ [ngrrl(z, 2')on(z")dz’ = —2me? /_ = sn(z)|z - 2'|dz’ = Vi[6n)(z) (8.16)

implies

d’w.,;gzn](x) = —dne?on(z) . (8.17)
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Thus, by taking the second derivative with respect to z of Eq. (6.26), one obtains

2 &
m dz?

{ncrr(z) - (0n(z) — 7A°(z))} — 47e?dn(z) =0. (8-18)

This equation can be converted into the coupled first-order equations

vn(z) = ncrr(z) - (dn(z) — n°(z))
d___y(;iz) = yoz)
2 .
o ) a1

which can be conveniently solved.

With the energy correction terms calculated, the Strutinsky scheme allows us to approx-
imate the quantum ground state energy using essentially classical Thomas-Fermi quantities.
We plot AE = Eppr — Egtr, AE — AEW), a;nd AE — AEW — AE®? as functions of N to
see the series convergence of the Strutinsky scheme in Figs. 8.2, 8.3 and 8.4 for e = 0.5,1.0
and 1.5 respectively. In the first two cases, the convergence seems to be working well: for
e = 0.5, without correction terms the error is 0.17 taking the average over N from 2 to
20 and smooth, while the first-order correction term improves the accuracy to 0.0013, and
the second-order term to roughly 1.3 x 10~%. For e = 1.0, without correction terms the
error is about 0.24. With the first-order correction the error reduces to 0.012, and with the
second-order to 0.0027.

For e = 1.5, before comparing the order of magnitude of the different terms, it is useful to
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Figure 8.2: Convergence of approximations to the quantum ground state energy for electron
charge e = 0.5. The curves are, from top to bottom, the error in the Strutinsky energy
correction approach taken at zeroth, first, and second order: specifically AE = Eppr — Egtr
(dotted), AE — AEM (dashed), and AE — AE() — AE®@ (solid). The convergence in this
case is excellent. The values of Egrr are -6.835, -34.450, and -173.619 for N = 5,10, and 20
respectively.
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Figure 8.3: Convergence of approximations to the quantum ground state energy for electron
charge e = 1.0. The curves are, from top to bottom, AE = Eppr — Egrr (dotted), AE —
AEWM (dashed), and AE —AE®™ — AE®? (solid). The values of Egrr are -114.986, -579.496,
and -2920.476 for N = 5, 10, and 20 respectively.
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Figure 8.4: Convergence of approximations to the quantum ground state energy for electron
charge e = 1.5. The curves are, from top to bottom, AE = Eppr — EgTF (dotted), AE —
AE®M (dashed), and AE—-AEM —AE® (solid). The values of Egrr are -362.500, -1826.887,
and -9206.935 for N = 5, 10, and 20 respectively.



say a few words about the odd-even structure clearly visible in Fig. 8.4, and actually already
apparent for e = 1.0 at low N in Fig. 8.3. The origin of this behavior is not related to spin
(which has not been included) but can be readily understood by looking at the lower panel
of Fig. 8.5, which shows the effective Thomas-Fermi potential Veg[ngrr] for N = 20, e = 1.5.
Here, one sees that the latter has developed a barrier at the center of the well, the top of
which lies very close to the chemical potential. For the quantum case, this means that the
one particle levels below the Fermi energy are organized as quasi-doublets. This naturally
leads to an odd-even effect since for NV even (odd), the last occupied orbital has an energy
consistently below (above) that suggested by the Weyl approximation.

Moreover, because the last occupied orbitals are close to the chemical potential and so
near the top of the barrier, it is clear that semiclassical approximations will be “at risk”
here. This is clearly seen for instance in Figs. 8.6 and 8.7, which, for coupling e = 1.5 and
N =19 and 20 particles, shows a comparison between the exact dn(r) = nppr(r) — ngrr(r)
and its approximation obtained using Eq. (6.26). The two curves are almost on top of each
other everywhere, except in the middle of the well—that is, near the maxima of the barrier.
In addition, one observes that in that place, the approximation is worse for an odd than
for an even number of particles. This can be explained by the fact that in the former case
the last occupied orbital is symmetric and thus has a probability maximum at the origin,
while in the latter case the last occupied orbital is antisymmetric and so goes to zero. As
a consequence the errors in the Strutinsky approximation scheme also display an odd-even

structure clearly seen in Fig. 8.5. If, however, one concentrates on the even case, where the

3



:lTlllllllllllllIl:
: (a) 3
P - -
S nt =
N C 3
S —-F -
o | 3
:lllllllllllllllll:
| B LR S LELELL! LI
7~
Q
-]
X8
L ]
":' |
— S
h“
Q =~
- |

Figure 8.5: The electron density (upper panel) and effective potential (lower panel) for N =20
particles and e=1.5. In the upper panel, results for both the Thomas-Fermi (dashed) and
quantum (solid) cases are given. In the lower panel, the dashed horizontal line is the position
of the chemical potential ptr.
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Figure 8.6: Comparison between the exact n = nprr — nGTF (dashed line) and its approx-
imation derived from Eq. (6.26) (solid line) for e = 1.5 and N = 19.

effect of the central barrier is less important, without correction terms the error is about 0.35
taking the average over N from 2 to 20. With the first-order correction the error is reduced

to 0.065, and further reduced to about 0.039 if one includes the second-order corrections.
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Figure 8.7: Comparison between the exact én = nprr — ngrr (dashed line) and its approx-
imation derived from Eq. (6.26) (solid line) for e = 1.5 and N = 20.
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8.4 Peak Spacings

Turhing now to the inverse compressibility xy introduced in Sect. 7, we observe the same
trend as for the ground-state energy. The approximation XISVTR(O), calculated strictly within
the Thomas-Fermi approximation, already gives an excellent relative precision. Moreover,
for e = 0.5 and e = 1.0, each term in the Strutinsky development significantly reduces the
error. For these cases however the approximation is already much better than the mean
spacing A if the first correction is included. We therefore show the data only for e = 1.5, for
which the corrections are enhanced by the proximity of the chemical potential to the top of
the inner barrier. In Fig. 8.8(a), the xx are shown. The discrete points represent the full
quantum calculations and are taken as the reference points. It is seen that x,svTR(o) does not
capture the odd-even double-well effect, but otherwise captures the essential peak spacing
behavior. In Fig. 8.8(b), the relative errors are shown as a function of N. More specifically,
the difference between the quantum xy and one, two, or three terms of the Strutinsky series—

STR(0) _STR(1 STR(2
Xy ()’XN ()ande (2)

, respectively—is divided by A, the mean level separation. It is
seen that the majority of the odd-even, double-well effect is captured by the first correction
term. Reassuringly, even in this case for which the inner barrier degrades the quality of the
semiclassical development, each inclusion of an extra term in the series reduces somewhat
the relative errors of the Strutinsky method. Moreover the improvement due to the addition
of the second order correction becomes more significant with increasing N. Thus we see

that even in this more difficuli case, the Strutinsky method gives an excellent scheme of

approximation in the semiclassical limit.
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Figure 8.8: The discrete inverse compressibility as a function of electron number N. The
open circles are xx using the quantum ground state energy (exact). Results using three

approximate ground state energies are shown: (1) dotted: Thomas-Fermi, x}c‘vm(o) using
EctF, (2) dashed: first-order Strutinsky, xi}mm using Eqtr + AEM, and (3) solid: second-

order Strutinsky, x5 @ using Egtr + AEM + AE®. The lower panel shows the relative

errors, (xy — X3F)/A, of the same three approximations.
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8.5 Deformation of the Effective Potential

Up to this point, we have been interested in the contributions of two quantum mechanical
energy correction terms. As we have mentioned, the ground state energy in the generalized-
Thomas-Fermi approximation, Ecrr, and the first-order correction constitute, in some sense,
the same level of approximation as in the constant interaction model. By equating the

expression for the ground state energy, one can derive the definition of capacitance C,

N2e2 N
Egrr + AEWM = — Tol ; € (8.20)

where the negative sign in the charging energy is due to the nature of our one-dimensional
model system. The capacitance, as a function of particle number N, smoothly varies as
N~Y3 approximately, and it approaches zero with increasing N.

When one adds an extra particle to the system, it causes a deformation of the effective
potential. In the constant interaction model, as often applied, this effect is ignored by
assuming that locally the capacitance and single particle energies are independent of the
particle number. On the other hand, since our energy correction approach calculates each
system having different particle number independently, the “scrambling effect” on the ground
state energy due to the changing effective potential is automatically included. To observe
the significance of the scrambling for peak spacings, we have calculated the fluctuating part
of the discrete inverse compressibility by both freezing the effective potential and allowing

it to change self-consistently. We used only the GTF ground state energy and the first



order correction term turning off the residual interaction contribution. With scrambling,
Ecrr basically contribute as the mean part of the discrete inverse compressibility and AEW
contribute as the fluctuating part. Without scrambling, the charging energy and the Weyl
part of the single particle energy levels contribute as the mean part, and the remaining
part in the single particle energy levels contribute as the fluctuating part. The results are
depicted in Fig. 8.9. In our toy 1D model, the changes in x{\f (f1 for a fluctuating part) due
to scrambling are seen to be getting smaller as N increases and less than the scale given by
Apy. However, we caution against assuming that the scrambling of xx would occur on the
same scale in more realistic multidimensional models with the Coulomb interaction. This

question is under investigation and left for future work.
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Figure 8.9: The fluctuating part of the discrete inverse compressibility scaled by the mean
level spacing. The upper figure is the fluctuating part of xx with scrambling. The odd-even
effects are due to the nature of the double well shaped effective potential. The lower figure
is the difference in the fluctuating part with and without scrambling ( * denotes the case for
without scrambling). Both figures are generated with electron interaction strength e = 1.5.
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Chapter 9

Role of Dynamics in Interacting Fermion Systems:

Ground State Properties of Quantum Dots

9.1 Introduction

A quantum dot is a mesoscopic semiconductor electronic device containing one to few thou-
sand electrons. Due to its small size, the allowed energies of electrons are quantized giving
the discrete energy spectra with corresponding eigenstates. In electronic transport measure-
ments, the conductance is suppressed due to the Coulomb repulsion among electrons. This is
known as the Coulomb blockade (CB) and is a classical effect [91,92]. When the appropriate
gate voltage is tuned such that the ground state energy of N electrons and that of N+1
become degenerate, a large conductance peak arises. By continuously changing the voltage,
conductance peak oscillations are produced. These oscillations are periodic, and the spacing
between peaks gives €2/C which originates in the charging energy (C is the capacitance of
the dot). At low temperature where kg7 < A (mean single-particle level spacing), quan-
tum interference becomes significant. The conductance peaks grow and deviate due to the
coupling between wave functions and leads attached to the dots, and the spacings fluctuate
because of the quantum interference effects on the ground state energy.

The constant interaction (CI) model is the simplest approach to investigate Coulomb
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blockaded quantum dots. The model approximates the ground state energy as

2
Ev=221 T e (9.1)

2C aoccupied io

where ¢, is the single-particle energy for orbital ¢ and spin 0. Once the interaction among N
particles are included as the classical charging energy, its quantum mechanical contribution
comes from the total energy of non-interacting quasiparticles. It has been successful in
explaining some of the experimentally observed statistical properties such as conductance
peak height distributions and mean separation of the peaks. However, the experimental
studies of the CB peak spacing fluctuations show significant disagreement with the CI model
prediction. Since the peak spacing is proportional to the discrete inverse compressibility

defined as the second difference of the ground state energy

A?En = Eny1 + Enoy — 2EW, (9.2)

the CI model leads to the following expressions

2

A2Ey = %+6N/2+|—€N/2 (N even) (9.3)
2

A2Ey = % (N odd) (9.4)

assuming mean field is unchanged by the number of electrons. Thus, the CI model predicts a

strong odd-even effect due to the electron spin degeneracy. Assuming that the corresponding
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classical dynamics is chaotic and the Bohigas-Giannoni-Schmit conjecture applies [64] (see
later section), the single-particle energies behave statistically like the eigenvalues in RMT.
Then, the above expressions lead to a bimodal structure for the peak spacing distribution:
§ function and Wigner surmise. Yet, there is no such structure observed in measurements.
Only a weak odd-even spin signature is captured [93]. In addition to the spacing distributions,
spacing fluctuations are considerably larger (in experiments) than the theoretical description.
These discrepancies between the CI model predictions and the experimental observations
indicate that a more sophisticated treatment of the electron interaction is necessary for the
study of CB peak spacing distributions.

For a finer approach to the electron-electron interaction, this is a perfect setting to apply
the Strutinsky energy correction scheme discussed in the last chapter. The method gives the

semiclassical expression for the ground state energy as

EDp'r ~ E(;'n: + AE(U + AE(z) (9.5)

where the correction terms are

AEW = £%[Vig[nore]] (9.6)
AE® — % / drdr' 7% (£) Vic (r, P)7%(r’). (9.7)

The physical interpretations (discussed in Chapter 6) of the above terms are given as follows:

the first order correction is the fluctuation part of the single-particle energies computed in
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the effective potential V.g[ngrr]- One can interpret this as the sum of the oscillating parts
56.-,

N
gfgc[ng[ﬂcrpﬂ = Z 66,‘, (9.8)

i=1

knowing that each energy ¢; has its smooth and fluctuating part as ¢; = é; + d¢;. The second
order correction is basically the energy due to the fluctuating part of the electron density
interacting with itself through a screened potential, and it is interpreted as the residual
interaction of the electron density. Let us consider the (discrete) inverse compressibility of
the system for the purpose of illustrating the effect of the residual interaction term. As an
example, if the standard up-down filling of the orbitals is assumed and also the mean field

is unaffected by the electron number, the inverse compressibility becomes

A’Eyny = A’Egrr + 0€ny1 — 6€6n +2)_(Mniri — My;) (N even) (9.9)

=1

AEni = A’Egrr + Mpiine (N odd) (9.10)
where we simplified the residual interaction term by defining matrix elements
My = [ drdr[gi(x) PVielr, ©) 15(e") 2. (9.11)

Here, N represents the number of particles, and the subscript n is the orbital number. We
note that 7°< in the residual interaction term is replaced by & = ¥; |¢;(r)|2. While this

replacement shifts the smooth part of the inverse compressibility (one can always separate
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any quantum mechanical quantity into an averaging smooth part and a fluctuating part),
the fluctuating part remains unchanged. Since the Strutinsky scheme is based on the local
density approximation, it only gives the “direct” interaction within the oscillatory part of
density by M;;, and misses the related “exchange” interaction term. Thus, the electron spin
is not yet properly handled in the ground state energy representation. It is discussed in
Ref. [94] that by physical considerations, the residual interaction must be modified with the

exchange term as

1 1 .
En({nis}) = Egtr + Y_ nig0€; + 3 Y niMijnje — 2 3" niaNijnjo (9.12)
io i,j:0,0° t.Jio
where
N; = / drdr'y; () (r) Vae (v, £) 35 (r') 47 (') (9.13)

represents the exchange interaction, n;, is the occupation number which takes either the
values 0 or 1, and o(= =*1) specifies the spin. A state for a N-particle system is thus
characterized by the combination of the occupation numbers (n,,,n3,....), and the total
number of particle is fixed with N =} n;,.

Suppose electrons fill the orbitals in the standard manner, i.e., simple up-down filling,
the spin polarization of the ground state becomes either 0 or 1/2 depending on the number
of electrons in the dot. This gives the equal probability distribution for both polariza-
tions. However, it has been suggested that the standard orbital occupation is not always the

preferable way for many-electron systems when particle interactions are taken into account.
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Usaj et al. [95,96] employ the universal Hamiltonian to show finite temperature effects on
peak spacing distribution and spin of quantum dots. Brouwer et al. [97,98| shows the non-
standard orbital occupation studying RMT for the systems in both the presence and absence
of time-reversal symmetry. Hirose et al. [99,100] and Jiang et al. [101] independently study
the ground state spin in terms of spin-density-functional theory. Although there are many
other theoretical approaches [94,102-105] indicating the importance of studying non-trivial
electron orbital filling mechanism, explicit measurements have not been reported so far.

In this chapter, we apply the Strutinsky method to describe the system of two-degree-
of-freedom quantum dots, and especially focus on the dynamical effects on the statistics of
CB conductance peak spacings and the ground state spin polarizations. We introduce the
two-dimensional coupled quartic oscillator potential as a sample realization of such systems.

The advantage of employing the coupled quartic oscillator is that one can continuously
tune the degree of chaos from near-integrability to mostly-chaos by changing the value of
mode coupling constant. The coupling constant can introduce disorder to svstems. In
addition, we include a time-reversal symmetry breaking term to reproduce experimentally
accessible magnetic field effects. The time-reversal invariant quartic oscillator give us a
means to study the dynamical effects on the connection between the residual interaction
and wave functions. However, it fails to describe the ground state energy of quantum dots
properly. The reason is that the higher order terms, which are ignored in the Strutinsky
second order correction, significantly contribute to the interaction energy and reduce the

total energy of the system. It was discussed in the context of diagrammatic perturbation



theory and semiclassical finite-temperature Green functions [106-108]. On the other hand,
there are no such higher order interaction contributions for the time-reversal non-invariant
systems, and the Strutinsky second order scheme successfully represents the ground state of

quantum dots.
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Chapter 10

Dynamical Systems - Coupled Quartic Oscillator

10.1 Semiclassical Effective Potential

There exist many types of quantum dots. One kind of quantum dots is fabricated in the in-
terface of two metallic semiconductor layers (GaAs-AlGaAs for example) confining electrons
vertically and forming the two-dimensional electron gas (2DEG). Negatively applied gate
voltages create the potential barriers in the 2DEG, isolating the dot region from the electron
reservoirs. To achieve an isolated quantum dot in the Coulomb blockade regime, coupling
to the dot is very weak. The leads are called the quantum point contacts, and the electron
transport is allowed only via tunneling. Combinations of the gate configurations and the
applied voltages determine the shapes of the dots. In addition, there is a deformation of
the potential (thus the dot shape) when extra electrons are added to the dot the so-called
scrambling effect, which has to be taken into account.

In the Strutinsky method, three energy functionals contribute to determine the effective
potential: external confinement, electron interaction, and the exchange-correlation effect.
The scrambling effect is automatically included since systems with different electron numbers
are treated independently in the scheme. Recognizing the gate confinement as the external
potential (including the deformation due to the gate voltage adjustment), the Strutinsky
method defines the model system for the quantum dot. Once the effective potential is
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constructed, it becomes the only “confinement” for the system, and the electrons can be
viewed as non-interacting quasiparticles. Whereas, in experiments, the dot shape results from
the gate configurations; for theoretical studies, the effective potential can be modeled directly.
This flexibility of choosing the effective potential is equivalent to the one of modifying the
external gate configuration. For our purposes, choosing the two-dimensional coupled quartic

oscillator potential as the Thomas-Fermi effective potential,
=
Veg[ngrr)(r) = a(N) [T +by* + 2/\1'2!/2] , (10.1)

has many advantages; see ahead. Furthermore, it is reasonably realistic since quantum dots
can be built with the external gate configurations such that the resulting effective potential is
similar to the quartic oscillator confinement. The quartic oscillator quantum dot’s statistical

properties will thus be representative of the properties of true dots.

10.2 Two-Dimensional Coupled Quartic Oscillator

10.2.1 Classical Mechanical Level

Since the classical and quantum mechanical studies of the quartic oscillators have been previ-
ously investigated, we introduce some of the key ideas from the work of Bohigas, Tomsovic,
and Ullmo [114]. The two-dimensional coupled quartic oscillator serves as a paradigm of
simple non-integrable conservative systems. The two degrees of freedom are the fewest to

exhibit a non-integrable dynamics in a conservative system. The classical Hamiltonian is
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given as

2
+
(A8 = BLEPE 1 a(3)(gl/b + ba + 22g3a)) (102)

where the parameter A denotes the strength of coupling of the two modes, and the constant
b reduces the system’s symmetry [114]. The system can be continuously tuned from integra-
bility to (almost) complete chaos by changing the value of A. Due to the homogeneity of the
potential, only a single energy surface is needed to be investigated (classically). Since the

potential satisfies

V(aq) = a'V(a), (10.3)

the set of solutions x° = (p°(t), q°(t)) which satisfy H(x?) = E° give the scaling properties

pE(t) = E/E° p°(7t) (10.4)

qf(t) = (E/E°)Y'q°(t) (10.5)

where v = (E/E®)'/4, providing the solutions x¥ = (pE(t),qE(t)) for the different energy
H(xE) = E without solving the latter system explicitly. In addition, the Hamiltonian is

invariant under the following transformations, the reflection and time reversal operations:

P,: ¢——g, pi——pi (1=1.2) (10.6)

T: t——t(orp;——p; (i=1,2)). (10.7)
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Thus, for a given solution

x(t) = (p1(t), p2(2), a1 (t), q2(2)), (10.8)

there exist three corresponding solutions due to the symmetry

(=p1(2), p2(t), —u(2), q2(t)), (10.9)
(71 (), —p2(t), @1 (2), —q2(2)), (10.10)
(=pr(=t), —=p2(=t), 1 (—t), g2(—¢)). (10.11)

For the special case when b = 1, the system becomes further invariant under the combined
operation P, - P, (the symmetry under index exchange 1 & 2), but this case must be avoided
for quantum mechanical considerations. Therefore, the choice for b is set 7/4. The coupling
of the two modes will be taken sufficiently strong to prevent the system from the possibility
of effective one-dimensional decomposition.

The coupling constant A represents the degree of chaoticity, and so determines the dy-
namical behavior of the system. For this reason, one of the proper approaches is to study
the )\ dependence of phase space structure using surfaces of section. The system has two
degrees of freedom, and the corresponding phase space is a four-dimensional space spanned
by the q1, g2, p1, and p, axes. Taking advantage of the reflection symmetries, two surfaces of
sections are set at the ¢ = 0 and ¢» = 0 planes. Because each trajectory crosses at least one

of the planes, no further surface is necessary. To construct the surfaces of section, consider
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the g = 0 plane, for example. Starting at one point (initial condition) in the phase space,
let the system evolve in time. The point will follow a certain trajectory, and every time this
trajectory crosses the ¢o = O plane with positive momentum p,, one records the coordinate
(q1,p)- For a given initial condition, there exist a Poincaré section of the trajectory. The
section can appear as a finite number of points, a closed curve, or a two-dimensional region.
Each corresponds to the initial condition, starting on a closed trajectory, an invariant torus,
or a chaotic region respectively. Within the range of —1 < A < 0, Ref. [114] shows the
evolution of Poincaré sections as decreasing A\. For A = 0, the motion is two uncoupled
oscillators showing the invariant tori with concentric closed curves centered at the origin.
When A takes the value near —0.20 or less, all of the original irrational tori are destroyed. As
A decreases towards —1.0, the chaotic region continuously grows, and at A = —0.60 almost

the entire surface is dominated by the chaotic region.

10.2.2 Quantum Mechanical Level

At the quantum mechanical level, systems are governed by the Hamiltonian

52

v p_ .
H=2—+aV(q) (10.12)

with the same homogeneity property for the potential V(aq) = a*V'(q). Then the energy

spectra and eigenstates have the following scaling properties

E® =a'*E? (10.13)
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Va(q) x ¥o(aq) (10.14)

where the superscript 0 represents the case with a = 1. Besides the scaling properties,
there exist parity symmetries for the eigenstates. Due to the reflection symmetry under F;
operations (Eq. (10.6)), the eigenstates are classified into four parity sequences (¢, ¢;) where
¢; takes either +1 or -1 representing the parity for g;. With the choice of b = 1 (see the
b dependence of the potential, Eq. (10.2)), each state further possesses a symmetry under
P, - P», leading two-fold degeneracy, or one can consider it as the particle exchange symmetry.
Since it will easily complicate the analysis, we avoid b = 1 to exclude this symmetry.
Quantum mechanical information of a system is often contained in fluctuations of physical
quantities such as energy spectra. The study of the level density or counting function gives
us insight into the fluctuation properties of energy spectra. For given discrete eigenspectra,

the counting (or staircase) function is defined as

N(E) = fe(z -E)= Y 1=Ti(O(E - H)), (10.15)
=1

Ei<E

where O is the Heaviside step function, and the level density is obtained as its derivative

dzzgs ) = f 8(E — E;) = Tr(8(E — H)). (10.16)

i=1

p(E) =

To extract the fluctuating part, one must decompose the quantity into its smooth (or average)

and the fluctuating (or oscillating) parts. Based on the idea of the Wigner transform of a
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quantum mechanical operator, the counting function for the quartic oscillator is separated

as follows (see Ref. [114] for a detailed derivation)
N(E) = N(E)+dN(FE) (10.17)

where the smooth part is calculated as

2K((1—-XA)/2) m E3/? _ (b~Y2 +b2)(3 + )

N(E) = . R2a(\)1/2 24\ﬁ(1+)‘)

+O(K2E~¥?),  (10.18)

and K(z) is a complete elliptic integral of the first kind. Because of the four parity classes

of the eigenspectra, N(E) can be modified for each parity sequences

[(1/4)%(erdb™'/* + e2b!/Y) E3/4
26 KY/2((1 — A)/2)
_ (b—l/2 + 61/2)(3 + /\) + €1€2
24/2(1 + 1)) 4

- 1
Nn,ez(E) = 1[53/2_*_

+ O(E~3%) (10.19)

where the coefficient a()\) is set as

2K((1 = A)/2) m
3 R

a(\)V? = (10.20)

making the coefficient of the lowest order term unity, and this defines the scaling of the

system.
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10.3 Eigenstates of the System

10.3.1 Matrix Representation of Hamiltonian

Based on the idea developed in Ref [114], we use a matrix diagonalization approach to
calculate the eigenstates of the system. First, the Hamiltonian H must be expressed in matrix
form, and the elements are numerically evaluated within some basis. A basis must be the
set of (discrete) eigenfunctions of some other integrable Hamiltonian H, (usually separable
system). In most cases, the bases are an infinite set of eigenvectors which constitutes an
orthonormal bases of a Hilbert space, and one must truncate the particular basis within
some range of energy. With this truncated basis subset, the original Hamiltonian matrix is
constructed in the subspace of the Hilbert space, and diagonalization proceeds on the finite
matrix. To optimize the number of converged eigenstates, one must choose the best suited
basis set for the Hamiltonian. In the semiclassical limit, the Wigner transformed quantity
of an eigenstate is more or less localized on the energy surface in the analogous phase space.
Then, the overlap between a basis state |n) (where Hoy|n) = e, |n)) and an eigenstate |¥;)
(where H |¥;) = E, |¥;)) gives a negligibly small number if the corresponding two energy
surfaces do not cross. If the energy surfaces of the entire truncated basis set completely
cover the energy surface of eigenstate, it will be well converged in the calculation.

To proceed with the matrix diagonalization of two-dimensional coupled quartic oscilla-
tors, it is suitable to choose the two-dimensional uncoupled quartic oscillator as the basis.

Once the eigenstates are represented in terms of the truncated basis set, the uncoupled sys-



tem is just the direct product of two one-dimensional systems. To be more explicit, consider

the two-dimensional quartic oscillator given in Eq. (10.1)

H= 222- +a(\) [%4 + byt + 2M2y2] , (10.21)

and the Hamiltonian which gives the basis as

52

H = % +a()) [%4 + by“ : (10.22)

This is easily separated into two Hamiltonians

Hy=H.+H, (10.23)
where
g, o= P % (10.24)
= = 27T :
N A
Hy = 3+aby . (10.25)

The last step is to compute the one-dimensional quartic oscillator eigenstates in terms of

harmonic oscillator basis. Let us consider the following one-dimensional Hamiltonians

a2

Hqo. = ’—’2-ai-cq4 (10.26)
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w?q?
2

Huo. = %2+ (10.27)

The advantage of employing the harmonic oscillator is that all of the necessary information
and analytical expressions are known. Using the properties of the ladder operator @ and at,

the matrix elements of ffq,o_ are given as

(ml Hgo.In) = 1= (Valn = Din=2)(n = 3) dnns

+ -2(2n -1)- _wc_3] ynn—1) dpn

3
+ |6n2 + (3 + “’?) (2n + 1)] Omn

- o3
+ L2(211 +3) - -E-] \/(n + 1)(n + 2) dmn+2

+/(n+ D +2)(n+3)(n+4) «sm,m) . (10.28)

The bases are optimized with the appropriate angular frequency w; see Appendix C for
details.

For the two-dimensional quartic oscillator system, one decomposes the original NV x N
matrix into four submatrices with the reduced dimension of N/4 since the wave functions
are classified into four parity sequences. The resulting eigenstates are constructed in terms

of the basis having the same parity sequence.
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10.3.2 Spectra

To study the dynamical properties of the quantum mechanical quartic oscillator, we in-
vestigate systems in three different regimes classified with the mode coupling constant A.
Although the chaotic nature of a quantum system is difficult to define, the system’s classical
counterpart can characterize the degree of chaos (or regularity of the system). Thus, based
on the behavior of the surfaces of section (see Ref. [114]), we choose A = —0.05, —0.35, and
—0.55 for near integrability, mixed, and chaotic systems respectively.

For some time, random matrix theory (RMT) has been applied to the study of com-
pound nuclear models, and it has successfully described the excited states of such many-
body strongly interacting systems. Approximately twenty years ago, this was generalized
according to the Bohigas-Giannoni-Schmit conjecture [64]. It asserts that the energy level
fluctuations of a single-particle quantum system whose classical analogue shows chaotic be-
havior can also be interpreted within the context of RMT [109]. It predicts statistics for
generic chaotic systems depending only on the symmetry of the system [31-34,112]. To illus-
trate “degree of chaos” in quantum systems, we show the number variance statistics of the
energy spectra (see Appendix D) and compare with the Poisson and Gaussian orthogonal en-
semble (GOE) statistics. When the system is in the chaotic regime, the corresponding RMT
statistics are represented by the GOE since the systems preserve time reversal symmetry.
On the other hand, the Poisson statistics [110] gives a reference for integrability.

To compare the fluctuations of two spectra from different systems, one must first remove

the effects of the global, smooth behavior of the level density; i.e. the energy spectra must
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be unfolded [111]. Unfolding proceeds by mapping the original spectra { E;} onto {E} by
E! = N(E;); see Eq. (10.15) to (10.19). As a result of this mapping, unfolded spectra
{E!} have the same average part N(E!) = E!, and the mean level spacing becomes unity.
This process is necessary especially when one considers the statistics of ensemble or spectral
averages. For the quantum quartic oscillator system, we use analytical results Eq. (10.19)
to unfold the energy spectra in each parity sequence.

Figure (10.1) shows the number variance statistics ¥2(r) of the spectra for the three dy-
namical systems; see Appendix D for £2(r). Dropping off the first 200 spectra, the statistics
are computed using the data from i = 201 to 600 (500 for A = —0.05). With the refer-
ence lines of Poisson and GOE statistics, one can observe that for the near integrable case
(A = —0.05), the curve due to the spectral fluctuation is located close to the Poisson; for the
chaotic case (A = —0.55), the curve is on the GOE reference line (except for some known
dynamical effects for r > 1); and for the mixed case (A = —0.35), the data is in between
the two reference curves. These behaviors coincide with the classical study of the surfaces

of section as expected; see figures in Ref. [114].
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Figure 10.1: Number Variance £%(r) versus r. (a) Poisson, (b) A = —0.05, (c) A = -0.35, (d)
GOE, and (e) A = —0.55. Poisson and GOE results are displayed for the sake of comparison.
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10.4 Residual Interaction: Study of M;;

10.4.1 Local Approximation to the Screened Potential

Before we start investigating the behavior of the residual interaction, let us consider the

property of the screened potential. According to the Strutinsky method, the relation

/ dr’ Jt‘sf:ﬁ (r,¥)on(r') = / dr' Ve (r, v/ )% (r') (10.29)

serves as the definition of the screened potential, and we recall the closure equation for én

?Tre
]

nz

[ a2 e, )on(e) + [ d' I (e, )Bn(r) - 7)) = An (10.30)

where 6n = npgr — ngtr and Ap = pfer — uctr- It should be noted that the second order

functional derivatives are given as follows,

2T o(r—-r
_61:2'1’ (r,r') = _fo ) ), (10.31)
and the potential contribution,
oV, 02E,, 2 .
—a—:li(r, r)= T‘z‘(r, r)= Fe-_l"l = Veou(r — r). (10.32)

Recalling the definition Eio.[n] = Eext[n]+ Ecou[n]+ Exc[n], the second equality in Eq. (10.32)

holds for the following reasons. The confinement energy is independent of the electron
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density, and energy due to the exchange-correlation is approximated by taking the exact
results for the uniform electron gas (local density approximation). Thus, both contributions
vanish when the second derivatives are taken, and what is left is the Coulomb interaction

energy functional. Introducing the following Fourier transforms

Veou(k) = [ dr e Voqu(r) (10.33)
sik) = / dr e=™*8n(r) (10.34)
Ak = / dr e~ %" (r) (10.35)
Vie(k) = / dr e~ %"V, (r), (10.36)

convolutions of Egs. (10.29) and (10.30) become

(21];):1 /dk eik.r“}coul(k)éﬁ(k) = (27];)4/(11‘ eik'r‘;;c(k);lm(k) (10.37)
1 ey A 1 wc0n(k) =R (K) _ e
o [ e Vea00K) + (oo [ e T2 = s f ke i),

(10.38)

where d is dimensionality of system, and V..(r —r’) is assumed. Then, the Fourier transform

of the screened potential is obtained as

¥ ‘;;oul(k)
Vx k = -~ -
( ) 1+ pW (l') V::oul(k)

(10.39)
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For the two-dimensional system, one has

- 2mwe?
‘/coul(k) = Ikl (10'40)
w o_ 9sm
p Pyt (10.41)

where g, is the electron spin degree of freedom, and the screened potential is written as

2me?

Vie(k) = — 2 Vou(k) = Mrat
0

(10.42)

where ag = h?/me? is Bohr radius. The rightmost quantity recovers the Thomas-Fermi
approximation to the screened potential in two-dimension. There are two limiting cases for

the potential,

Vie(k) = Viou(k) (for |k|™' < ao) (10.43)
Vie(k) ~ pi (for [k|~' > ao). (10.44)

For the case of the length scale |k|™! >> aq, inverse Fourier transform gives

Vie(r, ') = ‘s(‘;)—,—v'l'l, (10.45)

and we call this regime as the local approximation to the screened interaction. For the

experimentally relevant electronic densities, the screened interaction must be treated as a
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short range potential, and in this report, we study the behavior of M;; focusing on this limit
by

Vie(r,r') = piwa(r —r) (10.46)

where 0 < ¢ < 1. Since é-function makes the interaction local, the direct and exchange

energies are combined, and the modified residual interaction is given as

1
2

1
Y. nieMinje — 3

i,j;0.0"

1
Znt’aNijnja = 3 Z /drdr'lqb,-(r)lzv;c(r—r')|¢j(r')|2

i,j;d l’.j;ﬂ,ﬂ'

- 3 /dl'dl"¢i(r)¢;(r)V,c(r - r')o;(r)o; (r')

i,jio=o’

S My (10.47)

i.jiofa

= N

where in the last equality we used
R 1 X 21 4 ()2
M;; = P dr|éi(r)|%|o; ()" (10.48)

10.4.2 Numerical Approach to M;;

The constant interaction model, or equivalently Strutinsky scheme with up to the first order
correction, deals with the model system of quantum dots based on non-interacting quasi-
particle description treating the electron interaction as the classical charging energy. At this
level of approximation, electrons occupy orbitals in the standard up/down fillings taken into
account the spin degree of freedom. For an N-electron system, the lowest N/2 (for N even,

and (N+1)/2 for odd case) orbitals are occupied. On the other hand, with the inclusion
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of the residual interaction, it is expected that the situation is no longer the same, and the
system seeks the orbital configuration which gives the lowest possible energy by exciting
some of the electrons to higher states. For this to happen, the size of the residual interaction
must be large enough so that it is comparable to the single-particle mean level spacing of the
system. If the effects of the residual interaction are small, a transition from the CI model
predictions will not occur. Therefore, it is important to carefully study the matrix elements
M;;.

Given the eigenstates of the coupled quartic oscillator confined system, one constructs
the matrix elements M;; based on Eq. (10.48), and the systems in three coupling regimes are
considered: A = —0.05 (near integrable), —0.35 (mixed), and —0.55 (chaotic). In Fig. (10.2),
(10.3), and (10.4), the M;; matrix elements from ¢,j = 401 to 500 are plotted for A =
—0.05, —0.35, —0.55 respectively. The overlap of wavefunctions is enhanced when nodes of
two wavefunctions coincide with each other, and so the diagonal elements give larger peaks
than the off-diagonals. In Fig. (10.5), the diagonal elements are plotted as a function of
orbital number i. The data are scaled by the single-particle mean level spacing A;, and
demonstrate that the size is comparable to the level spacing; see Table (10.1). There lies the
cause of the CI model failure. For all three cases, the scaled M;; rapidly increase as i changes
from 1 to 200, then becomes stable for ¢ > 200. There exists a lower bound for all cases
near M; ~ 1.5. The peaks are more pronounced as the coupling is decreased (as the system
becomes less chaotic). The distribution of the scaled M;; elements are shown in Fig. (10.6).

The peaks in M;; make the fluctuations larger, and lead to larger widths for the distribution.
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Figure 10.2: The matrix elements M;; are plotted for the TRI system with the coupling
constant A = —0.05. M;; is not scaled by mean level spacing in this figure. The ranges of
index are i, 7 = 401 to 500.
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Figure 10.3: The matrix elements M;; are plotted for the TRI system with the coupling
constant A = —0.35. M;; is not scaled by mean level spacing in this figure. The ranges of
index are t, 7 = 401 to 500.
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Figure 10.4: The matrix elements M;; are plotted for the TRI system with the coupling
constant A = —0.55. M;; is not scaled by mean level spacing in this figure. The ranges of
index are %, = 401 to 500.
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Figure 10.5: Diagonal elements of M;; (i = j) versus orbital number i. M;; are scaled by
the single-particle mean level spacing of orbitals. Top figure: coupling constant A = —0.05,
middle: A = —0.35, and bottom: A = —0.55. Data are available for the lowest 600 (500 for
A = —0.05) orbitals.
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rMoments Integrable Mixed Chaotic
1 1.800051 1.654756 1.575006
[1.5]
2 6.718166 x10~2 | 5.127600 x10~2 | 2.002593 x10~2
[3.896926 x 1072
(o0 = 0.2591942) | (o = 0.2264420) | (o = 0.1415130)
3 1.851345 x10-2 | 1.850391 x10~2 | 4.177686 x10~%
(m1 = 1.063191) | (1, = 1.593647) | (71 = 1.474167)
4 1.456817 x10-2 | 1.595251 x10~2 | 2.098844 x10~°
(y2 = 0.2277764) | (12 = 3.067373) | (7. = 2.233531)

Table 10.1: Moments of scaled M;; distribution for quartic oscillator system (TRI). First
four moments are calculated for the near-integrable, mixed, and chaotic regimes. Standard
deviation o, skewness 7;, and kurtosis ¥, are also computed for each related moment. The
values in the square brackets are obtained by the analytical expressions with N = 500 given
in Appendix F. All the higher moments (> 3) vanish in the large .V limit according to Ullmo
and Baranger [94].

In addition, it gives the long right tail especially for the near integrable case A = —0.05.
As the chaoticity is increased, the peak values are decreased and the distribution width and
tails becomes smaller. On the other hand, the off-diagonal elements M;; with 0 < |i —j| < 5
(near diagonal) show smaller means and deviations. The means are roughly 3 times smaller
than the diagonal; see Fig. (10.7) for the distributions. Now, to understand some of the
behavior of diagonal elements, let us look at the eigenstates shown in Fig. (10.8). There are
six wavefunctions plotted, and all of them belong to about the same energy range giving the
eigenenergy ¢; ~ 52.0. While the three states in the right column (A = -0.05, —0.35, —0.55
from top to bottom) have node spreading roughly over classically allowed regions, the other
three states in the left column are spatially localized having many fewer nodes in y-direction

(vertical direction in figure). Since the diagonal elements are calculated with the fourth
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Figure 10.6: Distribution of diagonal elements M;;. M;; are scaled by the single-particle mean
level spacing of orbitals. Top figure: probability density, bottom: cumulative distribution.
For both figures, A = —0.05, —0.35, and —0.55 are represented by dotted, dashed, and solid
lines respectively.
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Figure 10.7: Distribution (probability density) of off-diagonal elements M;;. M;; are scaled
by the single-particle mean level spacing of orbitals A;. Only the near diagonal elements

(0 < |i — j| < 5) are used. A = —0.05,—0.35, and —0.55 are represented by dotted, dashed,
and solid lines respectively.
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power of the wavefunctions, the localized states give large values once they are integrated.
The lower bound seen in Fig. (10.5) are given by the states similar to the eigenstates in
the right column. In the chaotic regime, the eigenstates are more likely to be smeared out
over the coordinate space, and the localization becomes weaker than it would be for more

regularized systems. As a result, less pronounced peaks are observed.
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Figure 10.8: Coupled quartic oscillator eigenstates (contour levels are equidistant). While
the states in the left column lead to high peaks in M;;, the ones in right column give the
lower bound values. Top row (A = —0.05): the 99th eigenstate in (+,+) sequence giving
M /A; = 2.4746 (left), the 101th state in (+,-) sequence giving M;/A; = 1.5584 (right).
Middle row (A = —0.35): the 99th state in (+.-) sequence giving M;/A; = 1.9974 (left),
the 95th state in (-,+) sequence giving M;;/A; = 1.5446 (right). Bottom row (A = —0.55):
the 88th eigenstate in (-,-) sequence giving M;;/A; = 2.0813 (left), the 99th state in (+,+)
sequence giving M;;/A; = 1.4403 (right).
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Chapter 11

Breaking anti-unitary symmetry

11.1 Anti-Unitary Symmetries

Although the transition from GOE to GUE (Gaussian unitary ensemble) is well known in
the context of RMT [113], our interest here is to understand statistical behavior of ex-
plicitly defined dynamical systems whose energy level fluctuations correspond to the GUE.
Applying magnetic fields to classically chaotic systems makes the system time-reversal non-
invariant. However, this is not enough to ensure GUE statistics [115]. Let us consider the
two-dimensional system confined in the xy-plane, having a magnetic field applied in the
perpendicular z-direction. The Hamiltonian includes a term like B(yp, — zp,) where B rep-
resents the magnetic field. It breaks the time-reversal symmetry. However, the combined
operations of time-reversal and spatial reflection leave the system invariant. These actions
can be viewed as reversing the direction of magnetic field and turn the system upside down.
It recovers exactly the same previous situation. Therefore one cannot expect the energy
spectra of this system to lead to GUE statistics. To achieve this, one needs to break all
anti-unitary symmetries. Any combinations of spatial reflection (unitary) with time-reversal

(anti-unitary) constitutes an anti-unitary operation. For example, in a Cartesian coordinate
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system, the spatial reflections are

Pr:z—> -z, pr > —p: (11.1)

Py:y— —y, py = —py (11.2)

and the time-reversal operation is

T:pr— —Pz, Py = —Py - (11.3)

Excluding difficult to discover dynamical symmetries, the possible anti-unitary operations
are T, TP,, TP,, and TP, P, since each operation commutes, and contributions only come
from an odd number of operations. zp, and yp, are the simplest terms to break the anti-
unitary symmetries. These terms multiplied by functions of the following quantities, p;2*,

p,?, %, and y** where a, b, c,d are integers, break symmetries as well.

11.2 Hamiltonian of System

Based on the previous two-dimensional coupled quartic oscillator Eq. (10.21), we add a new
term and modify the confining potential to break all anti-unitary symmetries within the
system. There are some constraints needed to be satisfied besides breaking the symmetries:
preservation of all reflection symmetries, homogeneity, Hermiticity, level density, and energy

scaling properties should remain unchanged. Having reflection symmetries allow us to clas-



sify the resulting quantum states into four parity groups. This is not only for computational
convenience, but also for statistical considerations. We will treat four parity classes as com-
pletely independent systems, which will be discussed later in more detail. Other constraints
are necessary to utilize the results of the quartic oscillator study [114].

We find that the following modified Hamiltonian meets all the requirements,
- PP 1 e\ 4 4 2.2 € - s 2 2
H = 5 +a()) 3 + 3)* + by’ + 2\z%y°| + 5\/0(,\) (rp,.r + p,r )cos 0 (11.4)

where h = m = 1, and p, = pycosf + p,sinf. e represents the strength of anti-unitary
symmetry breaking (third term), and when ¢ — 0, the previous Hamiltonian (GOE) is
recovered. In the classical limit of this operator, the modified coefficient €2 /2 on z* guarantees
that the semiclassical level density expression is kept unchanged. The third term can be
included in p? + ¢2az* when completing the square. Thus, the classical Hamiltonian is given
as

H= % (p+e\/_ale—;)2+a[z‘/b+by4 + 2222y (11.5)

The only change is a shift in radial direction of momentum, and this does not alter the
behavior of the level density when integrating over all space. (rp,r + p,72)/2 simply makes
the system Hermitian. In the classical limit, the equations of motion cancel the effect of
the symmetry breaking without cos? 0, and they become invariant under some anti-unitary

operation. Inclusion of cos? @ avoids this cancellation and keeps the system non-invariant
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under any operation. The equations of motions are

z3 2¢\/a zyy
i = —da|=—+Ary?) - D—= )
g = —4a (by3 + ,\xzy) + M_ﬂ (11 7)
Vi +y? ’

where zyy and riy make the system anti-unitary non-invariant. We have two dynamical
systems having different symmetry properties. One is the coupled quartic oscillator system
studied in the last chapter without an anti-unitary symmetry breaking term. We denote this
as the TRI (time reversal invariant) system. The other is the quartic oscillator system with
the symmetry breaking term. We denote this as the TRNI (time reversal non-invariant)
system. However, it has to be mentioned that the time reversal symmetry is just one of the

anti-unitary symmetry classes, and we use this short hand notation mainly for convenience.

11.3 Numerical Calculations: Energy Spectra

To solve the time-independent Schrodinger equation for the system, we construct a numerical
Hamiltonian matrix using the harmonic oscillator basis, and then diagonalize it to obtain
the energy spectra and wave functions. It is suitable to work in the polar coordinate system
because of the form of the symmetry breaking term, especially for the radial direction of
momentum operator p,. While many introductory quantum mechanics books deal with
harmonic oscillator in Cartesian coordinate, its radial basis studies are rare. Instead. they

can be found in the nuclear physics literature dealing with isotropic potentials [116-120].
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11.3.1 Radial harmonic oscillator basis

Adapting the study of Bera et al. [116] in the N-dimensional harmonic oscillator, we set
N = 2 and modify their results to fit our system. Starting with the time-independent
Schrodinger equation for the two-dimensional isotropic harmonic potential, one obtains dif-

ferential equations for the radial and angular coordinates,

[—%V2 + V(r)] ¢=FEp = (11.8)
2

[ it g+ 2na = W) = 5| Rualr) =0 (11.9)

e +at0, =0 (11.10)

where ¢, o(r) = Rpo(r) - ©.(6) and V(r) = w?r?/2. The normalized solutions are,

2n! .
Roo = ,(n-i-a)'w(a“)/z "‘""2/2L;"(ur2) (11.11)

emd

6. = NoT (11.12)

where E, . = (2n+a+ 1)w, n 2 0,a > —n, and Lg is a Laguerre polynomial. For a < 0,

Laguerre polynomials satisfy [122],

(n+a)

L3(z) = (—2)*Li%a(z) (11.13)
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or in more convenient form

Rpa(r) = (-1)?Rpta,—alr) - (11.14)

This relation has the advantage of reducing the order of large n polynomials to n+a (a < 0),

and decreases the risk of divergence in numerical calculations.

11.3.2 Basis rotation and parity

Since the system retains the reflection symmetries about x and y axis, the eigenstates can
be grouped into four parity classes: even-even (+,+), even-odd (+,-), odd-even (-,+), and
odd-odd (-,-). It is reasonable to group the basis set into the same parity classes. Let us

rotate the basis functions in Hilbert space and define new basis as follows:

bra = %(¢n—a.ci¢n,-a) (11.15)
= %Rn_a.c[eat(—l)“e_ol (11.16)

using Eq. (11.14), or for each parity

+ cos af

Even-Even: na = Rnga ~ (a even) (11.17)
Odd- 4+ = sin af

Even-Odd: nae = BRnaa \/1_r (a odd) (11.18)
cos af

Odd-Even: ¢,, = Ra_qa—7= (aodd) (11.19)

7
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0dd-0dd: ¢, = R,,_.,,.,sm\/;a (a even) (11.20)

where n > 0 and a > 0, and ¢/ 5 = @np for a =0.

11.3.3 Operator recurrence formulas

The ladder operators for the harmonic oscillator have an important role in constructing the
numerical Hamiltonian matrix in Cartesian coordinates. They allow us to calculate matrix
elements from direct spatial integration to simple manipulation of quantum numbers. For
systems in polar coordinate, Swainson and Drake [121] have derived a Laplace-transform
method to study the hydrogen atom in three dimensions. Bera et al. [116] further developed
this method to investigate the N-degree-of-freedom Schrédinger equation and derived the
recurrence formulas for the general radial wave functions of the harmonic oscillator and
Coulomb problems. Since their theory is valid for systems with N > 3, we made some
modifications to fit systems in two dimensions (N=2). Followings are the operator recurrence

formulas used in constructing our Hamiltonian system,

d a ]

[‘E; -S| Rue = 2/t D Rusracs (11.21)
d a«a ] [ .

[—-d—r _ : - QJT. Rn.a = =2 (n + a)w Rn,a—l (11’22)

[ % - % +wr|Rpa = —2vnw Ry 041 (11.23)
d a ]

[ 8 2 ir|Rae = 2t at D R - (11.24)
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Position and momentum operators can be expressed as,

r = o - (11.25)
. d _i(@a—¢é&) _i(b—d)
Pr =T =3 (11.26)
where
d
1 = —— — — 9
a 7 +wr (11.27)
- d a«
b= —— - -wr (11.28)
d «
. _ 4 _a )
¢ i +wr (11.29)
: d «a
d = il (11.30)
All operators commute except two cases, [, & = —[b, d] = —4w. One can easily see that the

commutator of position and momentum operators satisfies [r, p,| = i.

11.3.4 Matrix representation of Hamiltonian

Let us now solve the time-independent Schrédinger equation. Physical constants i and m

are set to unity, and the system is characterized by A which determines degree of chaoticity

and € the strength of symmetry breaking (both negative). While increasing |\| corresponds

to increasing the extent of chaos, increasing |e| regularizes the system. Three dynamical

regimes are of interest, near integrable, mixed, and chaotic. Hence, we choose three sets

123



of values for A\ and ¢, based on the behavior of Poincaré surfaces of section. Our choices
are confirmed by a study of the number variance statistics £2(r), which will be discussed in
section 11.3.5.

The matrix elements are evaluated in terms of the radial harmonic oscillator basis, and
bases are optimized choosing an appropriate value for the angular frequency w (see Ap-
pendix C). The construction of the matrix requires the following decomposition. Instead
of directly evaluating the kinetic energy operator, we add the isotropic harmonic potential.
This is because the eigenvalues are already given, and it is much easier to evaluate the har-
monic potential than to calculate the kinetic energy. This artificial addition is adjusted by

subtracting off the same harmonic potential. Thus we write,

H=H, + H, (11.31)
where
-~ -~ 2 2 -~
Hy = Huo-—+Vao. (11.32)
;7 _ € - ~ 2 2
H, = 5\/a(A) (rprr + D1 )cos 0. (11.33)

The symmetry breaking term is purely imaginary, while the other terms are all real, and

- PP, Wi

Hyo = —é—-*- 2 (11.34)
2

Vao. = a(N) [(%+%) :t4+by4+2,\:1:2y2] . (11.35)
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Using the orthonormality of the basis, The first term in Eq. (11.32) simply gives eigenvalues

of the radial harmonic oscillator,

(m, 8 lfIy,o| n, a) =2n+ a+ 1)w 8, mda s- (11.36)

The second term in Eq. (11.32) is,
2 2 . 00
n,a> =< -—1—/ df e(e—518 / dr rRn s r*Roq
0 0

w?r?
(ms|(-57")|me) =~ 5

w
= —S4as [(2n +a+)bam—/(n+ 1)(n+ 0+ Dnsim — y/n(n+ a)a,._l,,,.] ,

(11.37)
where the operator r? acts on R, , as

PRa = 75 (- 5) (¢ - d) Rua
= % [(2‘" +a+ I)R“'a - J(n + 1)(" +a+ I)Rn-i-l,o Y} n(n + O) —l,a]

(11.38)

and the orthonomality of the radial function is expressed as

[:’ dr rRmoRna = Omn - (11.39)
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The third term, the quartic oscillator, is

- A
<myﬂ|VQ,o.|n’ a) = féw)z
LLSPIN Voa+D)m+2)n+3)(n+4)
Alz+s+o- a—d.8 [ (n+1)(n+2)(n+3)(n +4) dniam

~4y/(n +1)(n +2)(n + 3)(n + a) dnram

+6/(n+1)(n+2)(n+a)(n+a—1) duiom

—4\[(n + 1) (n+a)n+a—-1)(n+a-—2)di1m

+\/(n+a)(n+a— n+a-2)(n+a-3) 6,.,,,.]

[~

+4( +§—b) ba-2 [—\ﬁz(n+a)(n+a—- N(n+a—=2)ép_1m

+@An+a+1)\/(n+a)(n+a—-1) bum

-3@2n+a+1)y/(n+1)(n +a) dnrim

+(@n +3a+3)\/(n + 1)(n +2) dnszm

~Jr+Dm+2)n+3)n+a+l) 5,,+3',,,]

+6 (l + < +b+ gz\) bas [ﬁ(n —l(n+a)(n+a—1)dn2m

b 2 3
-2(2n + a)\/n(n +a) bn1m

+rrn-1)+(n+a+1)(5n+a+2)] dnm

-22n+a+ 2)\/(11 +1)n+a+1)dsrim

+/(n+1)(n+2)(n+a+1)(n+a+2) 5,.+2',,,]

+4 ( + € _ b) bat2,8 [—\/n(n —1)(n - 2)(n + @) dn-3m
+(4n + 3a + 1)m On—2,m
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32n+a+1)yn(n+a+1)dp1m

+@An+a+3)\/(n+a+1)(n+a+2) dum

~Ja+)n+rat+tDn+a+2)(n+a+3) 6,,“,,,,]
. (% +S - 2)\) borss  [VAlr— D120 —3) bosm

—4y/n(n —1)(n - 2)(n+a+1) dn_zm

+6\/n(n -Dn+a+l)(n+ta+2)d2m

—4y/n(n+a+1)(n+a+2)(n+a+3) buim

+/(n+a+)(n+a+2)(n+a+3)(n+a+d) Jn.m]) .

(11.40)

All three terms in Eq. (11.32) are given in terms of the original radial basis (no rotation),
and the ranges of indices are n > 0 and a > —n. Since the Hamiltonian is invariant
under spatial reflection symmetries, its eigenstates are grouped into four parity classes.
Then, it is convenient to use the basis having the same parities. The new basis can be
obtained by rotating the original radial basis in the Hilbert space, and we call this new
basis as the “rotated” basis. As a consequence, the Hamiltonian matrix becomes blocked

diagonalized, and each sub-matrix corresponds to one of the four parity classes. Then, the

matrix diagonalization is proceeded on each sub-matrix independently.

<¢1::a |H0l ¢yﬁ,ﬂ> = % [(nv —Q IHol m, _'6> + (Tl —-Qa,x lgol m - 3, ,’3)
+ (n, —a |ﬁo| m- 3, ﬂ) + (n —-—a,a Iﬁol m, —ﬁ)] (11.41)
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where all the indices now refer to the rotated basis, n,m > 0 and a, 3 > 0. When a and/or

B equal zero, one finds

<¢:,o Iﬁol ¢;:,ﬁ¢o> = ‘% [(n,O IHol m, "ﬂ> + <n,0 |ﬁo| m— (3, 3)] (11.42)
<¢:,a:,é0 |ﬁo| ¢,*,’,'0> = % [(n, —a |ﬁ0| m, 0> + <n -—a,a IHOI m,O)] (11.43)

(0%0|Ho|bho) = (n.0|Ho|m.0). (11.44)

We describe the last symmetry breaking term for each parity separately using the rotated

basis,
(04 |H|05a) =1+ i (11.45)
where
Q0 € . . 2
I = /0 dr rRy_s5 [5\/5(1'1),1' + pyr )] Ru-aa (11.46)
1 27
J = ;/0 d6 cos 36 cos? 8 cos af (11.47)
1 2%
- [o df sin 36 cos? 8 sin af (11.48)
or

(o o]
—9(2n—a+1)Va+1 /0 dr rRm—s.5Rn-anti
+2nv/n — a/:! dr R, _gsRn_a—1.a+1
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o0
—@n+l)Vrn—a+l [0 dr rRm_53Rn-at1at

+(4n —2a+1)Vn /0" dr 1R s Rt

~2,/n(n - 1)(n - a) /0 = dr rIi’,,,_g'ﬁR,._.,_l,a-I] (11.49)

1 1
Jr § (JQ'ﬁ += 50’_3) + Z (60'3.4.2 + 6,,',5_2 + 60’_5.{.2) (+/— fork=1or 2).

(11.50)

In Eq. (11.49), the radial integrations need to be evaluated numerically. For even-even parity,
we use the ¢* basis with even a, 8 and Ji = J; for even-odd parity, we use the ¢* basis with
odd a, 8 and J; = J,; for odd-even parity, we use the ¢~ basis with odd a, 3 and J; = Jy;
and for odd-odd parity, we use the ¢~ basis with even a, 8 and Ji = J,. Finally, one adds
Egs. (11.41) and (11.45) to construct the numerical Hamiltonian matrix. Hermiticity of this
complex Hamiltonian is obtained with the following conditions: for the real part, we require

(Ho)i; = (Ho);; and for the imaginary part, we require (H);; = —(H\);;-

11.3.5 Spectra

To observe the dynamical effects on the resulting statistical properties, we investigate the
Hamiltonian system in three different dynamical regimes, near integrable, mixed, and chaotic.
The degree of chaoticity can be controlled by tuning the coupling constant of the quartic
oscillator A\. In each regime, three cases with slightly different A\ values are arranged to
constitute a statistical ensemble. The reflection symmetries in every system allow one to

classify the eigenstates into four parity sequences. Instead of taking this parity decomposition
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just as the property of eigenstates or computational convenience, we treat them as completely
independent physical systems. In doing so, four sub-systems are derived as follows (’sub’ is
because four systems stem from the original one). Sub-systems are governed by the same
Hamiltonian discussed in previous section, but with additional boundary conditions applied.
For even-even parity sequence, spatial derivative of wave functions must vanish, d;y = 0
and 9,3 =0, at £ = 0 and y = 0 respectively. For even-odd, ;% =0atz =0and ¥ =0
at y = 0. For odd-even, » =0 at z = 0 and 9,1 = 0 at y = 0. For odd-odd, © = 0 both at
z = 0 and y = 0. One can consider these as the systems confined by the quartic oscillator
and hard walls at z = y = 0, and so 1/4 of coordinate space, say = > 0 and y > 0, as allowed
region of motion. (Strictly speaking, this hard wall picture is only valid for the odd-odd
case. To obtain ¥/ = 0, one must have different type of wall.)

Since we are interested in the systems leading to GUE statistics, the cases treated here
are those with broken anti-unitary symmetries, and so ¢ must be chosen to be non-zero.
With the studies of Poincaré surfaces of section (see Figs. (11.1), (11.2), (11.3)), we find that
the following coupling constants lead to the three dynamical regimes of interest: A = 0.20
(near integrable), —0.20 (mixed), and —0.80 (chaotic).

Eigenvalues and eigenvectors are generated by the matrix diagonalization of the numeri-
cally evaluated Hamiltonian in all three regimes. Once the energy eigenvalues are calculated,
spectral unfolding is performed. Since the Hamiltonian was designed to preserve the scaling
properties of the system, the same expression for the counting function of the quartic oscil-

lator discussed in chapter 10 can be applied. As given in Eq. (10.19), the counting function
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Figure 11.1: Poincaré surface of section for the coupled quartic oscillator system (TRNI)
with A = 0.20 and € = —1.0. Figure shows r = 0 surface, and the data points are recorded
when a momentum is positive p; > 0. The solid curve around (y, py) = (0.6,0.6) represents
the stable motion. (Figure courtesy of D.Ullmo).
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Figure 11.2: Poincaré surface of section for the coupled quartic oscillator system (TRNI)
with A = —0.20 and ¢ = —1.0. Data represent r = 0 surface with positive momentum
p: > 0. The solid curve around (y,p,) = (0.4,0.5) represents the stable motion. (Figure
courtesy of D.Ullmo).
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Figure 11.3: Poincaré surface of section for the coupled quartic oscillator system (TRNI)
with A = —0.80 and ¢ = —1.0. Data represent z = 0 surface with positive momentum
pz > 0. (Figure courtesy of D.Ullmo).
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Ny o(E)= i (20E*? + 0, E¥* + ap) + O(E™*), (11.51)

where

2K((1 —)\)/2 1
-~ 20N )a(,\)m =1 (11.52)
]:‘(1/4)2(611)-‘/4 + €2bl/4)

26T KV2((1 — \)/2)

a1 (11.53)

As expected, it is found that the coefficients are exactly the same as the previous case except
for a;. However, a; does not contribute to some derived relations such as level density.

Once the spectra are unfolded, one can test the convergence of eigenvalues for each
sequence by examining the oscillatory part of the counting function  N. Since the deviation
of the energy levels from the Weyl counting function is mapped onto fluctuations from
a uniformed spacing of unfolded spectra, one can subtract the average part and extract
the fluctuation. With all the spectra considered, we use following ranges as the converged
spectra: for A = 0.20, i = 0 to 199; for A = —0.20, i = 0 to 149; and for A = —0.80, : =0 to
124.

Using the converged unfolded spectra, one can obtain the number variance statistics
and observe the dynamical regime of the three systems; see Fig. (11.5). For the case with
coupling strength A = 0.20, the number variance curve (b) is close to the Poisson result
(a) indicating the system is in the near-integrable regime. For A = —0.20, the curve (c) is

located in between the Poisson and GOE (d) representing the mixed regime. For A = —0.80,
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Figure 11.4: Oscillatory part of the counting function d NV = N(E) — N(E) for energy levels
i = 0 — 400. Top figure: A = 0.20, middle: A = —0.20, and bottom: A = —0.80. For all
cases, the reflection symmetry (+,+). The other symmetry cases behave similarly. Figures
show full range of spectra data (including non-converged data, for example i > 200 in the
near-integrable case) for the sake of convergence study.
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the curve (F) follows the GUE curve (e) and starts separating with small oscillations at
r = 1. The statistics are generated with the spectral ensembles: for near integrability,
data for A = 0.18,0.20,0.22 are used, each giving four parity sequences; for mixed case,
A = —0.18,-0.20, —0.22 are used; and for chaotic case, A = —0.78, —0.80, —0.82 are used.
For each spectral set, the first 50 states are dropped. We set the symmetry breaking strength
to e = —1.0, and find that it is strong enough to shift the systems into the dynamical regime
of fully broken anti-unitary symmetry. It is confirmed by the behavior of the chaotic case
A= —0.80.

With the parity decomposition, the single-particle mean level spacings are derived from

the counting function

1/3
dN\ ! —a; + y/a? — dag(a,; — 4N
Ay = ( ) 16 [ 1 \/ 1 o(az ) . (11.54)

E - 3\/a1{ — 4ag(az — 4N) 2a0

While ag and a, are given by the analytical expressions, a; must be determined by numerical

non-linear fitting of the energy spectra.

11.4 Residual Interaction and M;;

In the previous study of the quartic oscillator (TRI) system, the numerical computation
involved the matrix diagonalization of the truncated Hamiltonian, and it proceeded using
the following steps: two-dimensional coupled quartic oscillator — two-dimensional uncou-

pled quartic oscillator — one-dimensional quartic oscillator — one-dimensional harmonic
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Figure 11.5: Number Variance X2(r) versus r. (a) Poisson, (b) A = 0.20, (c) A = —0.20, (d)
GOE, (e) GUE, and (f) A = —0.80. Poisson, GOE, and GUE results are displayed for the
sake of comparison.
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oscillator, where the arrow indicates matrix diagonalization with the choice of basis given on
the right side of each arrow. For TRNI case, due to the radial dependence of the symmetry
breaking term, the system must be computed in a one-step matrix diagonalization with the
radial harmonic oscillator basis. Therefore, one cannot avoid dealing with large numerical
Hamiltonian matrices and calculation time issues. Otherwise, one must be satisfied with a
reduced number of converged states. One way to construct wavefunctions is to use eigenvec-
tors (as expansion coefficients) and basis functions. Then, the matrix elements M;; can be
calculated using the wavefunctions. This approach is simple, but it is not always the best
choice. The reason is that, in general, the convergence of eigenvectors are not as good as
that of eigenvalues. For the purpose of constructing the matrix elements M;;, one should
avoid such an approach, to the extent possible, which requires grid point evaluations such
as finite difference methods or functional evaluations, for example. The allowed range of
numerical error is always determined by the size of the single-particle mean level spacing, in
other words, the numerical error can be acceptable if it is negligible compared to the mean
level spacing. For these reasons, we compute M;; with the following approach.

First of all, we note the condition for the eigenstate normalization. For many circum-
stances, it is convenient to deal with the full coordinate space rather than restricting oneself
to the £ > 0,y > 0 space. However, since the parity decomposed systems are defined in

the quarter space, one has to have a means to transform back to the quarter space. In the
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quarter space, the wavefunction is normalized such that

[z [7 aylotz, P =1, (11.55)

and the matrix elements M;; become

1 00
My = =7 [ dz [ dylodz,0)Plos(a )P (11.56)

On the other hand, if one uses the entire coordinate space, the normalization and M;;

becomes

[ :dz ) : dyld'(z, y)PP = 1 (11.57)

, 1 00 00 , 21 o 9
My == [ do [ dylél(z, )iz (11.59)

where the prime sign is used to indicate a different normalization rule. The following relations

are derived,

lol? = 4]¢'? (11.59)

1"[,']' = ‘U‘/I:J. (11.60)
Similarly for the mean level spacings, we obtain

A; =44, (11.61)
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so that the scaled matrix elements are unchanged

M; My

A Ay

(11.62)

Now let us consider the construction of M;; using the rotated basis with the local ap-

proximation to the screened interaction.

4 00 2%
My = [ rr [ do lou() ey )
4

— i () j } .
- pW z Cni,01Cnzaz c:ls.as CYII-; ay
n,,a; ,n2,a2,13,a3,n4,84

)
X [0'/0' rdrR"l"ﬂlvalR’l'.'-ama!R"s—aSvG:lRﬂ-(—'leoat’

(11.63)

(11.64)

where the factor of 4 comes from the normalization of the angular functions integrating over

0 to 27 for all space. The angular integration is given by,

(1/72) f2* d cos a0 cos az8 cos azfcosasd for (+,+),(—, +)

(1/%2) [2™ df'sin a;0sin a,fsinazfsinasd for (+,—),(—.—).

Introducing ¥ = a; — a; and ¢ = a; + a3, the above expressions reduce to

1

Ia = E [603,—01-{-0 (6 y-—az—o + 604.03+0 + 604,03—0 + 604.—03+0’)

+ 602101—7 (604'°3+'7 :t 604:“'3"'7 :t 604v‘°3+'7 + 6"4,03"‘7)] -
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Then, M;; becomes

. . e *}
M = w Z Z [C:u.a;c:;z,-m+a/0 rdr Ra,—ay .0, Bn;—(-a1+0).(~a1 +0)
g nip,0x1,n2,n3,a3,n4
DS ( n3,a3 —03-6/0 rdr Rn;;—oa.asRn.;—(—ag—a),(—as—a)
na,agdl4.aa+d / rdr Rﬂ3—03.03Rn4—(as+0).(03+0)
n;; agdu az—o ’ rdr R'ls-as.asR'N-(as—d)'(as—d)
+ c:us,osdl:.—a:-i—d /0“’ rdr Rna-as.asRvu—(—aa+c).(-as+6))]
i i o
+ w Z Z [cm.mcnz.m—vf rdr Rﬂl—m'mRﬂz—(m—‘r),(al—'r)
7 n1,@1,n2,03,03,04 0
X ( ns.asdl a3+y ’ rdr Rﬂs-Os'O:s R'u —(az+7).(az+7)
n;;,a;cv’u —03—7/ rdr Rﬂa—as.aaRn-a-(-ﬂs-‘r).(-t‘!s—‘r)
ns.asdu —-az+y / rdr Rﬂs—os.mRm-(—as-f-'v) (—az+7)

+ czxg.a:d.l:.aa—’y‘/o rdr Rﬂs—os.a;;Rn.g—(a:;—ﬂ,(a;—q))] . (1166)

Note that the summation indices a; and a4 are replaced by o and v. Furthermore, we

introduce the following definitions

Wielr) = Y G aCinaePn-aaRm—(a-g).(a—¢) (11.67)
nm,a
)/i,f(r) = Z cna m.—a-ER“—O'GRm- (-a—§)(~-a—§)- (1168)
nn.a
One must multiply each expansion coefficient ¢ , by 1/ v2 whenever a encounters zero,
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based on the fact ¢}y = @no. Eq. (11.66) is written as

1 a0
A/[ij = M—w Z/o rdr Y;,—G(Y}'a + VVj', + VVj,—a + )/].’_0)
1 i ©0
M oW 2/0 rdr Wi, (W;, £Yjy 2 Y + W), (11.69)
v

where for all cases, the upper sign represents parity sequences (+, +) and (—, +) and the lower
sign the sequences (+, —) and (—, —). Now the main task is to compute W, ., W, 15, Y: 4+,
and Y; ;,. Once the Hamiltonian matrix diagonalization is done, there is a finite number of
converged eigenstates. They give the range of indices for the rotated basis: 0 < n < npaqz,
Qmin < @ < Qmaz = Nmaz- Qmin is 0 for (+,+), 1 for (+,-) or (-,+), and 2 for (-,-). Since

~¥ = a; — az and 0 = ay + a3, their limits are

h’l < Qmar — Amin

2amin S o S 2ama::~ (1170)

If one writes W; ¢ and Y, ¢, the range of £ is || < 2amq.. However, the expansion coefficients
(eigenvectors of the Hamiltonian matrix) cﬁm are available only for @ > am,, the factor
c:',,fi‘,,_e limits the range of £ in W and Y ('+’ for W and -’ for Y). To be more explicit, the

following index ranges give non-zero W;¢ and Y, ¢.

Ifl < Qmaz — Omin (fOl‘ "Vi,f # O)

—20mazr < € < —2apmin (for Y #0). (11.71)
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In this representation, the normalization of the wavefunctions ¢; for all space can be obtained

as follows
[ar 162 =X hachs [ rdr Ru-aaRmsa- o (11.72)
n.a m,3
Using
ID = 60—6,0 + 6o+ﬁ.0v (11.73)

the expression in Eq. (11.72) can be rewritten as
(e o]
[dr ot = [~ rdr (Wio £ Yio), (11.74)

where the upper sign represents parity sequences (+,+) and (—. +) and the lower sign the
sequences (+,—) and (—, —) as before.

To construct M;; from the eigenvectors of the Hamiltonian matrix, there are mainly three
approaches. The first approach is to directly construct wavefunctions and integrate them.
This is the simplest way to calculate M;; and it is easy to understand the procedure. Because
it involves evaluation of wavefunctions on some mesh (grid points), the accuracy is the worst.
The second approach is to proceed with the manipulation of the expansion coefficients and
use the orthonormality of the basis. Since the evaluation of functions is avoided with the basis
orthonormality, this is the most preferable approach if one’s goal is to achieve high accuracy.
However, since M;; involves the fourth power of wavefunctions and each four summations
independently run from zero to few hundred, the products of expansion coefficients require

a huge storage space, which makes this approach practically impossible to use. The last
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approach combines the two approaches we just described. The idea is to take advantage of
both approaches. The direct evaluation of wavefunctions is avoided by the manipulation of
the expansion coefficients through W; ¢ and Y; ¢ (radial functions still need to be evaluated).
Then, one carries out summations over two indices o and v once the integrations are done.
This combined approach preserves a reasonable level of accuracy, and solves the problem of
data storage space.

The M;; are calculated for three coupling regimes A = 0.20, —0.20, and —0.80 (symmetry
breaking strength ¢ = —1.0). Figures (11.6), (11.7), and (11.8) show M;; for A = 0.20, —0.20,
and —0.80 respectively. Data are plotted for the lowest 200, 150, and 125 states for A =
0.20, -0.20, and -0.80 respectively. As seen in the TRI system, the diagonal elements are
larger than the off-diagonal elements. The diagonal elements are shown in Fig. (11.9). The
data is scaled by the single-particle mean level spacing of the energy levels. The localization
of the wavefunction produces large spikes, and the magnitudes of the peaks increase as the
system gains regularity. The lower bound of M;; is about 1.0, the size is comparable to A;;
this is consistent for all three regimes. The distribution of the diagonal elements are plotted
in Fig. (11.10), and the moments are computed in Table (11.1). Statistics are obtained
treating systems with slightly shifted coupling constants: for near integrable, A = 0.18, 0.20,
and 0.22; for mixed, A = -0.18, -0.20, and -0.22; for chaotic, A = -0.78, -0.80, and -0.82. All
four parity sequence data are included in each ensemble. Since the first 50 states in each
sequence are not stable, we threw them out by hand. Because of the stronger localization

of the wavefunction in the near-integrable regime, large peaks in M;; are responsible for
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Figure 11.6: The matrix elements M;; are plotted for the TRNI system with the coupling
constant A = 0.20. M;; is not scaled by the mean level spacing in this figure. The ranges of
the indices are i, j = 0 to 199. The parity sequence is set to (+,+).

the long right tail in the distribution. To show these long tails, the figure inset shows the
same data in a logarithmic scale. The chaotic regime exhibits much shorter tails than the
near-integraole case. Localization of wavefunctions is unlikely to occur in the chaotic case.
Figure (11.11) shows the probability density of the scaled off-diagonal M;; elements (near
diagonal). Generally, the overlap between two states is likely to destruct pattern of the

wavefunction unless both of the states are localized.
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120

Figure 11.7: The matrix elements M;; are plotted for the TRNI system with the coupling
constant A = —0.20. M;; is not scaled by the mean level spacing in this figure. The ranges
of the indices are ¢, j = 0 to 149. The parity sequence is set to (+,+).
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Figure 11.8: The matrix elements M;; are plotted for the TRNI system with the coupling
constant A = —0.80. M;; is not scaled by the mean level spacing in this figure. The ranges
of indices are i, j = 0 to 124. The parity sequence is set to (+,+).
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Figure 11.9: Diagonal elements of M;; (i = j) versus orbital number i for the system of
all anti-unitary symmetry broken. M;; are scaled by the single-particle mean level spacing
of the energy levels. Top figure: coupling constant A = 0.20, middle: A = —0.20, and
bottom: A = —0.80. Data have been calculated for the lowest 200, 150, and 125 orbitals for
A = 0.20, —0.20, and —0.80 respectively.
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Figure 11.10: Distribution of diagonal elements M;; for the system of all anti-unitary symme-
try broken. M;; are scaled by the single-particle mean level spacing of orbitals. Top figure:
probability density, bottom: cumulative distribution. Inset: the same probability density
but on a logarithmic scale to show long tail on the right side. For all figures, A = 0.20, —0.20,
and —0.80 are represented by dotted, dashed, and solid lines, respectively.
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Figure 11.11: Distribution (probability density) of off-diagonal elements M;; for the system
of all anti-unitary symmetry broken. M;; are scaled by the single-particle mean level spacing
of the energy levels A;. Only the near diagonal elements (0 < |i — j| < 5) are used.
A =0.20, —0.20, and —0.80 are represented by dotted, dashed, and solid lines respectively.
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| Moments Integrable Mixed Chaotic
1 1.181882 1.118237 1.023174
[1.0]
2 0.2481074 0.1048870 1.012331 x10~2
[0.6494882 x 1072
(0 = 0.4981038) | (o = 0.3238626) | (o = 0.1006146)
3 3.352051 x10- ¢ | 7.461422 x10~2 | 1.506123 x1073
(11 = 2.713111) | (71 = 2.196540) | (7, = 1.478689)
4 6.152538 x10-© | 7.987730 x10~2 | 5.921898 x10~°
(72 = 6.994819) | (72 = 4.260726) | (7. = 2.778512)

Table 11.1: Moments of scaled M;; distribution for quartic oscillator system in TRNI case.
The first four moments are calculated for the near-integrable, mixed, and chaotic regimes.
Standard deviation o, skewness 7, and kurtosis <, are also computed for each related mo-
ment. The values in the square brackets are obtained by the analytical expressions with
N = 500 given in Appendix F. All the higher moments (> 3) vanish in the large .V limit

according to Ullmo and Baranger [94].
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Chapter 12

Random Superposition of Plane Waves

In the study of quantum systems whose classical counterparts exhibit chaotic behavior,
Berry [124,125] made the conjecture that the spatially irregular wave functions, not too close
to the boundaries, were well approximated by a random superposition of plane waves. Let
us abbreviate it as PWSA - plane wave superposition approximation. The construction of

wave functions is given as

#(r) =Y anexp(ikn - r) (12.1)

where each plane wave has a random amplitude and random phase shift, and also a random
orientation of the wave vector with constant modulus. Unlike an eigenstate of a bound
system, the random plane wave completely ignores the boundary conditions. However, the
approximation is good as long as the wavelength is small compared to the system scale. As
a consequence of the approximation, the spatial correlations of an irregular eigenfunction is
given in terms of a zeroth-order Bessel function of the first kind whose argument depends only
on the energy and the distance, (¢(r;)d(rz2)) = const x Jy(k|r; — r2|) where € = (hk)?/2m.
This was verified by McDonald and Kaufman [126, 127] in their numerical study of the
stadium billiard system.

In contrast to the familiar speckle pattern of random waves, O’Connor et al. {128] found
that the waves always show a network of ridge structure and mentioned the possible con-
nection to the periodic orbit localization of wave functions called scarring [129, 130]. For
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the spatial correlation function, Prigodin et al. [131] investigated chaotic systems with time-
reversal symmetry and explained the experimental wave functions in microwave cavities.
Prigodin [132] also studied the case of broken time-reversal symmetry and derived a joint
probability for the given electron density at two different space points within the same eigen-
state. Srednicki [133] obtained the same result of the spatial correlations in wave functions
of quantum dots using Berry’s conjecture to simplify the approach. Since there exists a large
number of studies employing the random wave idea, we only introduce a few; others can be

found elsewhere [134].

12.1 Construction of Wave Functions

To construct wave functions for the time-reversal invariant system, only the real part of
plane waves must be taken, while for the broken time-reversal system, each plane wave
must be complex. Since there is no spatial reflection symmetry in PWSA, the presence or
absence of time-reversal symmetry characterizes the system’s statistical behavior, GOE or
GUE respectively. As stated in the introduction, a two-dimensional wave function is built
by

¢(z,y) = Y anexp [i(kZT + kyy + 27d,)]. (12.2)

We use Gaussian distributed random numbers [135] for the amplitudes a,, and uniformly
distributed random numbers for the phases §, (0 < 4, < 1) and the direction of the wave

vectors k™. More precisely, given uniformly distributed random numbers «,, between 0 to 1,
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the two components of the wave vector are given by

kZ? = k"cos(27k,) (12.3)
ky = k"sin(27k,), (12.4)

where the magnitude of the wave vector, (k*)? = (k2)? + (k7)?, is fixed to be constant.
To mimic the eigenstates of the coupled quartic oscillators (in the chaotic regime), let us
first consider the following. Combining all four parity sequences of eigenstates of the quartic

oscillator, the smooth part of the counting function is given by Eq. (10.18)

Nqo.(Eqo.) = Eds +0(1) (12.5)

using only the lowest order term. For a given energy and a mode coupling constant A not too
close to —1, the area of the classically allowed region can be approximated by a rectangle.
The area of the rectangle can be defined by the turning points, || < z.ym and |y| < Yurn,
as follows

AQo. = 2Trum - 2Wurn = 4a(A)"VINYS (12.6)

where the classical turning points along the £ and y axes are given as

Trum(Nqo) = (b/a)/*Ngo, (12.7)
Yum(Ngo) = (ab)™"*Ngg (12.8)
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with Eqo. = Nao. = a(z*/b+ by* + 2Az?y?).
In contrast, for the system of PWSA, we assume the two-dimensional infinite potential

well to confine the system. The smooth part of the counting function is

- dqd, mA
NE) = [SPOE-Hap) =5

E, (12.9)

where A represents the area of the bounded region, d = 2 is the degree of freedom, and the
spin degeneracy is not considered. It should be mentioned that the system does not require

the wavefunctions to vanish at the boundary. Using Eq. (12.9), the wave number is given by

V2 N
k= ;"E=,/4"4‘ : (12.10)

where N is shortened by N. In addition, the mean level spacing is expressed as

1 27 h?
=dNJdE ~ mA

Ay (12.11)

Now, to make connection between the PWSA system and the quartic oscillator system,

we set the counting functions and the area of the classical bounded region as follows

1V(E) = lVQ.o_(EQ_o.) (12.12)

A(N) = Aqo.(Nqo)- (12.13)



Then, the wave number and the mean level spacing are written as

k(Nqo) = \/7?0(1\)1/41\%%_ (12.14)
h? -
A(Ngo) = Z—\aWN{’, (12.15)

and the ith quartic oscillator eigenstate is approximated by the PWSA wavefunction of
wave number k(z) and boundary given by |z| < Zum (i) and |y| < Yrum(i). We note that the
equivalence in Eq. (12.12) does not necessary mean the equality between E and Eq .. Since
Eq. (12.5) does not carry quantum mechanical fluctuation information, one must employ

RMT to study energy spectra of PWSA if needed.

12.2 Validity of the Plane Wave Superposition Ap-

proximations

To verify the validity of our approach, we compare the level of complexity of the quartic
oscillator and a PWSA system. As the measure of complexity, we count the number of nodes
in the wave functions along x and y axes. Nodes are counted simply by recording the number
of points where the second derivative of the wave function along each axes changes sign. We
use the eigenstates of the TRI (time-reversal invariant) case as a reference since there are 600
eigenstates available in the chaotic regime (A = —0.55). Due to the reflection symmetries

of the quartic oscillator, odd parity gives node count zero. Figure (12.1) shows the node
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count comparison of the quartic oscillator eigenstates and the PWSA wave functions. As a
result, PWSA reconstructs the eigenstates reasonably well. Especially the overall trends of
how node numbers increases shows close similarities to the curve based on the full quantum

calculations.

12.3 Distribution of Diagonal Elements AM;;

In the last two sections, we studied dynamical systems, using the coupled quartic oscillator as
an examples and characterized the statistical behavior of the residual interaction by analyzing
the matrix elements M;;. It was found that the magnitude of the matrix elements, especially
the diagonal elements, were pronounced and comparable to the mean level spacings. To
investigate the role of the diagonal elements from a different perspective, we now consider
a non-dynamical system represented by PWSA. Compared to explicitly defined dynamical
systems (such as the quartic oscillator systems), PWSA (non-dynamical) systems allow us
to calculate eigenstates in a high energy domain easily. Therefore, it gives us a means to
observe asymptotic behavior of the matrix elements M;;.

We consider three energy domains represented by the orbital number 2, 1 < i < 600,
2000 < @ < 2500, and 5000 < < 5500, and denote them as low, middle, and high energy
domains, respectively. The low energy domain is designed to simulate the same range as
existing exact quantum mechanical eigenstate data of the quartic oscillator. For PWSA
wavefunctions, 100 plane waves are superposed, and each wavefunction is normalized over

the bounded region of area A. There are roughly 15, 25, and 40 wavelength on the shorter
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Node

Node

Figure 12.1: Node counts of wave functions vs. orbital number. For both, the coupled quartic
oscillator eigenstates and the PWSA wave functions, the number of nodes are counted along
the x axis (top) and the y axis (bottom). A solid line represents the number of nodes for
the quartic oscillator eigenstates ((+, +) reflection symmetry only) and circles that for the
PWSA wave functions.
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side of the rectangular boundary for the low, middle, and high energy domains, respectively.
These estimations are given by

21’;1:11 — 7‘,—1/261/41\[1/2’ (12.16)

where )\ donates the wavelength of the plane waves. Figure (12.2) shows the real part of the
complex wavefunction for the three different energy domains.

The M;; diagonal elements M;; are computed by directly proceeding the integration of
wavefunction over the boundary of the area 4 (M;; = [, dr|¢;|*), and then we scale M;; by
the mean level spacing given by Eq. (12.15). To reduce the size of the statistical error bar, 20
(30 for the low energy domain) sets of data ensemble are calculated for each energy domain.
For TRI case, wavefunctions are real and constructed only by cosine waves. In Fig. (12.3),
the scaled M;; are shown as a function of the orbital number i. In contrast to the previous
dynamical case, there are no pronounced peaks observed since the spatial localization of
wavefunctions cannot occur in the PWSA systems. However, in the low energy domain,
PWSA captures well the lower bound of fluctuations around M;;/A; ~ 1.4 and it is slowly
increasing. In the middle and high energy domain, the fluctuations become smaller and
remain closer to their mean. The statistical distributions of the matrix elements are shown
in Fig. (12.4). In the low energy domain, the first 200 wavefunctions are dropped and the
following 400 stable states are used for the statistics. Due to the absence of localized states,
the width of the distribution is narrow compared to the distributions obtained within the

quartic oscillator systems. The mean value is slowly increasing, and the width becomes even
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Figure 12.2: Contour map of random superpositions of plane waves for three energy domains.
Based on the energy scale of quartic oscillator system, corresponding effective orbital numbers
are 400 (top), 2200 (bottom left), and 5200 (bottom right) for the low, middle, and high
energy domains respectively (see text for detail). Contours are set to constant, and all figures
are shown at the same magnification. Only the real part of the complex waves is shown, and
the imaginary part is similar. The wave functions are constructed with 100 cosine (sine for

imaginary part) waves. Each wave has a Gaussian random amplitude, a random orientation
of wave vector, and a random phase shift.
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Moments Low Energy Middle Energy High Energy
1 1.383437 1.443644 1.448141
[1.5] [1.5] [1.5]
2 2417734 x107° 6.314935 x10~* 3.298077 x10~*
[3.582661 x10'3] [8.465977 x10“‘] [4.137801 xlO“‘]
(o = 4.917045 x1072) | (o = 2.512953 x10~?) | (o = 1.816061 x10~2)
3 8.216135 x10~° 9.614301 x107° 2.100260 x10~°
(m = 6.911223 x107!) | (71 = 6.058490 x10~!) [ (v, = 3.506566 x10~')
4 3.259792 x10~° 2.091303 x107° 4.520104 %10~
(12 = 2.576644) (y2 = 2.244198) (72 = 1.155534)

Table 12.1: Moments of scaled M;; distribution for PWSA system in TRI case. First four
moments are calculated for the low, middle, and high energy domain. Standard deviation
o, skewness v;, and kurtosis 7, are also computed for each related moment. The values in
the square brackets are obtained by the analytical expressions with N = 500, 2500, 5500 for
each energy domain; see Appendix F. All the higher moments (> 3) vanish in the large N
limit according to Ullmo and Baranger [94].

narrower as energy increases. Table (12.1) shows moments of the distributions. The third
and fourth moments decrease as energy increases indicating the distribution is slowly shifting
towards the Gaussian.

For TRNI case, wave functions are constructed with complex plane waves including both
sine and cosine parts. To study the behavior of M;;, we compare two scaled M;; data sets,
one for the dynamical system in chaotic regime by the quartic oscillator (Fig. (11.9)) and the
other for the non-dynamical case in low energy domain by PWSA (Fig. (12.5)). It should be
noted that for the dynamical system, the orbital number must be multiplied by the factor
of four to compare with one of PWSA due to the parity sequence decomposition. Following
properties are observed in the PWSA system, but they are basically the same as in the case

of TRI: there is no large pronounced peak, the fluctuations are smaller than the dynamical
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Figure 12.3: Diagonal elements of M;; (i = j) versus orbital number i for the system of the
real random superposition of plane waves. M;; are scaled by the single-particle mean level
spacing. Top figure: the lowest energy domain i = 0 to 500, middle: the middle energy
domain i = 2000 to 2500, and bottom: the highest energy domain ¢ = 5000 to 5500.
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Figure 12.4: Distribution of diagonal elements M;; for the system of the real random su-
perposition of plane waves. M;; are scaled by the single-particle mean level spacing. Top
figure: probability density, bottom: cumulative distribution. For both figures, the lowest,
middle and the highest energy domains are represented by dotted, dashed, and solid lines
respectively.
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Moments Low Energy Middle Energy High Energy
1 0.9248654 0.9674039 0.9688490
[1.0] [1.0] [L.0]
2 1.824599 x10~° 1.357828 x10~—* 6.968438 x107°
[0.5971102 x1073] [1.411000 x107Y] [ 6.896335 x10~°]
(o = 4.271532 x1072) | (o = 1.165259 x1072) | (o = 8.347717 x107?)
3 -2.460342 <10~ 5.196338 x10~* 1.016164 x10~*
(71 = -0.3156781) (71 = 0.3284205) (71 = 0.1746870)
4 4.549127 x10~° 7.732884 x1078 1.871578 x107°
(72 = 10.66449) (72 = 1.194227) (72 = 0.8542240)

Table 12.2: Moments of scaled M;; distribution for PWSA system in TRNI case. First four
moments are calculated for the low, middle, and high energy domain. Standard deviation
o, skewness v,, and kurtosis v, are also computed for each related moment. The values in
the square brackets are obtained by the analytical expressions with N = 500, 2500, 5500 for
each energy domain; see Appendix F. All the higher moments (> 3) vanish in the large N
limit according to Ullmo and Baranger [94].

system and they are around the mean value of ~ 1.0, the PWSA regenerate the lower bound
of oscillation, and the fluctuation reduces as one increases the energy. The distribution of
M;; is shown in Fig. (12.6). The long tail observed in the dynamical system is completely
washed out, and the distribution is symmetric about the mean value. We note how small the
third moment is, as opposed to the dynamical case; see Table (12.2). As the energy increases,
the higher moments (> 3) are being diminished, and so the distributions are changing into
one of Gaussian.

Overall, the tendency of the M;; distributions are gradually shifting into Gaussian dis-
tribution for both TRI and TRNI systems. In the energy domain of typical quantum dots,
which corresponds to the low energy domain of the PWSA systems, there is no such indication

detected. The PWSA requires system to have large boundary compare to the wavelength of

164



0.5
1.5

M; (Scaled)
O
(4)] -h

2100 2300 2500

1.5

5100 5300 5500

Figure 12.5: Diagonal elements of M;; (i = j) versus orbital number 7 for the system of the
complex random superposition of plane waves. M;; are scaled by the single-particle mean
level spacing. Top figure: the lowest energy domain ¢ = 0 to 500, middle: the middle energy
domain i = 2000 to 2500, and bottom: the highest energy domain i = 5000 to 5500.
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Figure 12.6: Distribution of diagonal elements M;; for the system of the complex random
superposition of plane waves. M;; are scaled by the single-particle mean level spacing. Top
figure: probability density, bottom: cumulative distribution. For both figures, the lowest,
middle and the highest energy domains are represented by dotted, dashed, and solid lines
respectively.
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plane waves for validity. In the low energy domain, there are only 15 wavelengths along one
side of the boundary. However, this is compensated by having an ensemble of 30 data sets
to ensure the randomness of the statistically independent data. As discussed in Ref. [128],
a network of ridge structure can be found in the PWSA wavefunctions especially in the
wavefunctions of the high energy domain although it seems there is no significant role in the

distribution of M.

12.4 Fluctuations of M;;

For the TRI system, the size of the diagonal elements M;; are roughly 1.5\ (M;; ~ A for the
TRNI system), almost independent of orbital numbers or at least slowly converging to the
values. However, the variance of the M; distribution decreases as the energy increases. To
learn more about the behavior of the two moments, we employ analytical formulae derived
by Ullmo and Baranger [94]. Based on Berry’s conjecture, they obtained the following
expressions using the spatial correlation function A (¢(r,)¢*(r2)) = Jo(kr|r, —r2|), where A
is the area of confined region and kf is Fermi wave vector. With the local approximation to

the screened interaction, mean and variance are given as

(M;) = (1+ Jij)% (12.17)
_ 3A%In(keL) ) .
var(JVI.,) = Fm(l + 35,_,) (12.18)
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where L is size of the confined region, and their system belongs to TRNI case. For TRI
case, the means and variances of the diagonal elements are related as (M:-Em ) =15 (M;fm>
and Var(MI®) = 6.0Var(M®"!); see Appendix F. While their expression uses krL as a
parameter, our variance depends on the orbital numbers, so one needs to know the connection

between krL them. In our expression, the wave vector and system size were

k = J/ma/tN'/3
L = 2y = 2(ab) /AN

= kL= V212N (12.19)

where N represents the orbital number. Their estimate gives kL = V4r N (where N is
converted from their particle number to the orbital number), and two estimates roughly
agrees. The numerical data and the analytical results are compared in Table (12.1) and
(12.1) for the TRI and TRNI cases respectively. For both cases, the means and variances
show reasonable agreements. The numerical data seem to converge slowly into the analytical

predictions as the energy increases.

168



Chapter 13

Peak Spacing distribution and Ground State Spin Po-

larization

The study of the behavior of the residual interaction mainly focused on the matrix el-
ements M;;. In this section, the ground state and CB conductance peak spacings are con-
structed using the result of the M;; calculations. In addition, the statistical properties of
the spacing distribution and the spin polarization of the ground states are considered for the

TRNI coupled quartic oscillator system.

13.1 Ground State Energy

Let us first start with calculating the ground state energy of an N-electron system. As

expressed in Eq. (9.12), the total energy is given as

Ex({nis}) = Eare + Y nisbes + = 3" nigMinjo
io 2 ijio#o’

using the local approximation to the screened potential. The ground state is obtained by
finding the combination of occupation numbers {n;,} which minimizes Ex({ni,}) under
the constraint N = Y n;,. It is obvious that the orbital occupation becomes the standard
up/down filling if the residual interaction is turned off, taken into account the electron spin

degree of freedom. By the standard up/down filling, we mean the following. Consider the
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system which contains N electrons. When N is even, the lowest N/2 orbitals are doubly
occupied, and when N is odd, the lowest (/V —1)/2 orbitals are double occupied and the last
(N + 1)/2 orbital is singly occupied. Once the residual interaction is turned on, the above
picture does not always give a valid description. Since it costs energy when two electrons
have opposite spins (this is the special case when the screened potential is local), sometimes
the system promotes one electron to the next higher orbital to lower the total energy. This
situation is likely to happen when the size of a particular M;; is comparable to the mean
level spacing.

To illustrate this effect, we consider the following example. The total energy of the

N-electron system can be rewritten as

Ey=E.+) niei + g Y nieMijnje. (13.1)
ic ijiofa’

where we note that the first two terms are replaced by the CI model expression. This is
safely done since the levels of approximation for the CI model and the first order Strutinsky
method are proven to be equivalent. Now, we describe the total energy in two cases: the
standard filling

EQ =E.+2Y «+C Y My, (13.2)

i=1 ij=1

and the case of promoting one electron at the last orbital to the next energy level while at
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the same time changing its spin orientation,

EP

ij=1 7

n n n n-—1
E. +2Z€g —€p t+ €y +C (Z M;; - ZA/I"J + Z A/[n-i-l,j)
=1 =1 =1

n—

= Eg)+fn+l—fn+<|:
I=

1
(A/I,H.['j - Z‘/In'j) - l‘/f,m] . (133)
1

The superscript 's’ and 'p’ represent the case of standard filling and promotion of one electron,
respectively, the orbital number n is N/2 (even N is considered for simplicity), and the
factor of 2 on each summation is due to the spin degeneracy. Neglecting the off-diagonal M;;

contribution, the following relation is derived,
(Mun > €ns1 —€n ~ Ay = EP < EY. (13.4)

It means that when the diagonal elements M, are large enough to be comparable to the
mean level spacing A, the residual interaction between two electrons at the last nth level
becomes costly, so the system promotes one of them to the next orbital. In general, both
diagonal and off-diagonal elements are expected to come into play, and so the standard
up/down filling does not always give the lowest energy. Therefore, the residual interaction

can lead to unusual orbital occupations that define the ground state of the system.
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13.2 Conductance Peak Spacings

The interplay of the matrix elements M;; and the single-particle energy plays a significant role
in determining the ground state orbital occupation, and it is expected that the conductance
peak spacings show the influence of the unusual electron fillings as well. As we mentioned
earlier, current through a quantum dot is suppressed except when the gate voltage is adjusted
such that Nth and (N + 1)th energies of the dot are degenerate. The conductance peak
positions are, thus, proportional to the differences between two energies, and the spacings

between adjacent two peaks are obtained by the second differences of the energies,

AE(N) = [E(N +1)—- E(N)] - [E(N) - E(N = 1)]

= E(N+1)+E(N - 1) — 2E(N)

where E(N) is the ground state energy of the dot containing NV electrons (Eq. (9.12)). Since
our interest here is to study the quantum mechanical information contained in the peak spac-
ing fluctuations, the ground state energy needs to be decomposed into a “(semi)classical”
averaging part and a “quantum mechanical” oscillating part. Let us recall the ingredients
of the ground state energy as obtained by the Strutinsky method. It consists of four con-
tributions: the generalized Thomas-Fermi energy, the oscillatory part of the single-particle
energy, the direct and exchange interaction energies. The generalized Thomas-Fermi energy
is basically a classical contribution and it varies smoothly as a function of particle number.

The oscillatory part of the single-particle energy is purely quantum mechanical and the av-
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eraging part is already removed. Since we modified the direct interaction by replacing 7%
with 71 in the Strutinsky second order correction term, it includes a smooth part due to
A% (= i — 1°c). For the same reason, the exchange energy involves both smooth and oscil-
lating parts. However, the majority of the averaging part can be separated out by excluding
Egtr from the ground state energy.

We first compute the ground state energy by E(NN)— Egtr using the previously calculated
single-particle energies {¢;} and the matrix elements {M;;} for three dynamical regimes, the
near-integrable, the mixed, and the chaotic, with the coupling constant A = 0.20, —0.20 and
~0.80 respectively. Then, the second difference is computed as A?2E(N) — A2EgtF, which
it gives peak spacing fluctuations with some constant shift. Once the second difference is
obtained as a function of the electron number, the oscillation curves are fitted by linear
regression to extract the fluctuation part. Figure (13.1) shows the fluctuation part of the
second difference. The linear fit to the averaging part gives a slope of ~ 1.0 x 1073 and the
constant shift ~ 0.7. The spacing fluctuations are measured in the unit of the mean level
spacing, [A2E(N) — (A2E(N))]/An, where A, with n = N/2 ((N + 1)/2) for even (odd)
N. We note that the mean level spacing is a slowly varying quantity except for small N.
The oscillation amplitude is largest in the near integrable case and decreases as the system
becomes more chaotic. Note that sometimes the fluctuations are as large as 4A in the near
integrable regime, but are always less than 2A in the chaotic regime.

The distribution of peak spacings is plotted in Fig. (13.2). There are long tails on both

sides and they are enhanced as the system acquires regularity. One can observe the same
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Figure 13.1: Fluctuating part of peak spacing is plotted from 100th to 201st spacings, and
they are scaled by the mean level spacing. The average part is subtracted off by linear
fit since it is almost a flat straight line for all cases. The spacings are computed for the
TRNI quartic oscillator system in three dynamical regimes: near integrable A = 0.20 (top),
mixed A = —0.20 (middle), and chaotic A = —0.80 (bottom). For all three cases, the parity
sequence (+,+) is shown.
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trends in the increasing variance of the distribution; see Table (13.1). For the near integrable
case, the variance is twice (6 times) as large as the value for the mixed (chaotic) regime.
Since the averaging part is subtracted off, the mean value is close to zero for all three cases.
Compared to the CI model prediction of a d-function plus Wigner surmise for chaotic systems
(6-function plus Poissonian for integrable systems), the probability density is drastically
altered by the interaction, the §-function is completely washed out, the distribution is almost
symmetric about their mean as represented in the third moment, and there is no strong
bimodal structure observed. In Fig. (13.3), we plot the distributions for even and odd
spacings separately. We denote the distributions, obtained with spacings when adding even
(odd) numbered electron to the system, as even (odd) distribution. There still remains some
odd-even effect and possibly bimodal structure, but it is significantly reduced due to the
residual interaction; see Table (13.2). While the CI model gives the widths of the even
spacing distributions Oeven, = 0.87 and 0.38 in the near-integrable and chaotic regimes, our
dynamical system gives Geven = 1.32, 0.92, and 0.57 for near integrable, mixed, and chaotic
regimes, respectively (measured in A). For the odd spacing distributions, the CI model shows
zero width due to the d-function, and the dynamical system gives goqq¢ = 1.17, 0.80, and
0.43 for near integrable, mixed, and chaotic regimes. The even/odd combined statistics gives
the widths for the dynamical systems, o = 1.25, 0.87, and 0.52 for near integrable, mixed,
and chaotic regimes, and the CI model gives 0 = 0.87 and 0.58 for the near-integrable and
chaotic cases. The spacing distributions are also calculated with the RMT (non-dynamical)

approach [94] giving the width of 0 = 0.24. The third moments are significantly smaller



than the CI model predictions, and they exhibit rather symmetric distributions.

The root of the long-tail distribution originates in the localization of wavefunctions.
The localized states give large matrix elements M;; especially on its diagonal, and in many
cases, they are larger than the mean level spacing. Since the matrix elements make the
residual interaction expensive, the system rearranges the orbital occupation and it produces
significant fluctuations in the ground state energies. As a consequence, the peak position
deviates from the location predicted by the system in the absence of the residual interaction,
and the spacing is also affected. Thus, if the localization is strong, the spacing fluctuations
are enhanced and contribute to the tails of the distribution. Since the wavefunctions in the
near integrable regime are likely to be more localized than in the chaotic regime, the spacing
fluctuations are larger, and the distribution tails are broadened. We remark that while the
diagonal elements Mj; often give values 2 to 3 times larger than A for the near integrable
system, they are reduced to 1.5 to 2 in the mixed case, and further suppressed to 1.2 in the
chaotic regime; see Fig. (11.9).

In order to decrease the statistical error bars, we generate an ensemble of data sets.
In each dynamical regime, we calculated three sets of data with slightly different coupling
constants: A = 0.18, 0.20, 0.22 for the near integrable, A\ = —0.22, —0.20, —0.18 for the mixed,
and A\ = —0.82, —0.80, —0.78 for the chaotic regime (for all cases, the symmetry breaking
strength ¢ is set to —1.0). In addition, since there exist four parity sequences due to the
reflection symmetry in the confining potential, a total of 12 data sets constitute the ensemble

for each dynamical regime. Peak spacings are constructed from N = 100 to 201, resuiting
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Moments Integrable Mixed Chaotic
1 -4.338480 x10~% 2.067565 x10~3 2.807189 x10~°
2 1.573654 0.7512421 0.2675636
(o = 1.254454) (o = 0.8667422) (o = 0.5172655)
3 3.921296 x10~2 0.1278263 1.050898 <102
(11 = 1.986395 x10~2 ) | (7; = 0.1963135 ) | (v, = 7.593115 x10~2)
4 10.36801 2.671355 0.4292751
(72 = 1.186747 ) (72 = 1.733383 ) (12 = 2.996274 )

Table 13.1: Moments are shown for the distributions of the peak spacing fluctuations (scaled).
First four moments are calculated for the near integrable, mixed, and chaotic regimes for the
TRNI coupled quartic oscillator system. Standard deviation o, skewness v;, and kurtosis ¥,
are also computed for each related moment.

in a total of 102 spacings in each data set.

13.3 Ground State Spin Polarization

The non-standard orbital occupations not only influence the peak spacings, but also affect
the spin polarization of the ground states. If the standard occupation is employed, the ground
state spin is either zero (even N) or 1/2 (odd N), giving equal probability of 50%. Here, we
made the assumption that electrons always occupy the orbital with spin up whenever there
is a freedom of choosing their orientation without costing extra energy. If, on the other hand,
spin down is assumed, the ground state spin simply changes its sign and takes either 0 or -1/2
with the same probability. Thus, we use the “spin-up” assumption throughout this section.
Figure (13.4) shows the distribution of the ground state spins in three dynamical regimes.
Remarkably, there exist significant portions of higher spin states especially in both, the near

integrable and the mixed cases, due to the non-standard orbital occupations. It is reasonable
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Figure 13.2: Probability density (top) and cumulative distribution (bottom) of the fluctu-
ating part of the peak spacings (scaled by mean level spacing). Distributions are obtained
using both even and odd spacings combined. The dynamical regimes are set to near in-
tegrable (dotted line), mixed (dashed), and chaotic (solid) for the TRNI quartic oscillator

system.
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Figure 13.3: Probability density of peak spacings distributions for even/odd spacings. The
distributions are obtained using the fluctuating part of the peak spacing scaled by the orbital
mean level spacing. The dynamical regimes are near integrable (top), mixed (middle), and
chaotic (bottom) for the TRNI quartic oscillator system. For each case, two distributions are
computed to observe the behaviors of even spacing (when adding an even numbered electron
to the system) and odd spacing (when adding an odd numbered electron to the system).
The solid line represents the even spacing distribution and the dashed line the odd spacing
distribution.
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Integrable Mixed | Chaotic
even odd even odd even odd
o 1.3171 1.1763 | 0.92389 [ 0.79822 | 0.57458 | 0.43315
(0.86603) (0.0) (0.58228) (0.0)
p3 | 0.025161 | -0.073031 | -0.13197 | 0.33785 | -0.092811 | 0.073985
(1.7500) (0.0) (0.15183) (0.0)

Table 13.2: Widths (standard deviations) and third moments of the peak spacing distribu-
tions are shown separately for the even/odd spacings in units of A. The moments in the near
integrable, mixed, and chaotic regimes for the TRNI coupled quartic oscillator system are
compared to the CI model predictions (4-function and Wigner surmise for the chaotic case,
and 4-function and Poisson statistics for the integrable case). The numbers in parenthesis
represent the CI model predictions.

to expect that the fraction of higher spins in the mixed regime is less pronounced than the
near integrable case in accordance with the fluctuation size of M;;. However, the fraction of
higher spins for the mixed case is almost the same as the one for the near-integrable case.
To see more explicitly how spins are distributed, we consider the distribution of ground
states based on the orbital occupations. Including the standard up/down filling, the most
favorable nine orbital occupation patterns are considered (in the sense that the system seeks
the least expensive energy states realizing the interplay of single-particle energy and the
residual interaction). The orbital occupation patterns are labeled by the code numbers
from O to 8 for even and odd cases separately. Starting with the standard occupation, the
patterns are determined by promoting electrons to higher energy states and/or changing its
spin orientation. This is actually how one finds the ground states. The orbital occupation
codes and associated distributions are plotted in Figs. (13.5, 13.6) for even and odd N ground

states, respectively. For even N, the first thing to notice is that the standard occupation
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Figure 13.4: Distribution of ground state spin polarization for the system of TRNI quartic
oscillator. The dynamical regimes are near integrable (top), mixed (middle), and chaotic
(bottom). Black bars represent the distribution of spin polarization when the ground state
consists of an even number of electrons, and gray bars represent that when the ground state
consists of odd electrons.
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gives the largest probability, and the spin 0 states consist of two different configurations
(code 0 and 3). In the near integrable and the mixed case, the probability of ground states
in code 3 is enhanced from the chaotic case. There are four codes to give spin 1: code 1, 2, 4,
and 6. Starting with the standard occupation, the code 1 is simply to promote one electron
to the next level flipping its spin orientation. The other codes 2, 4, and 6 are obtained by
further promoting a few more electrons without changing the spins. For the chaotic system,
code 1 dominates out of 4, indicating the occurrence of reconfiguration of occupation due to
the expensive residual interactions at the last n(= N/2)th orbital. On the other hand, for
the integrable and mixed systems, the probability is not the largest at the code 1, but it is
spread out to the rest representing more involved orbital occupation processes. Interestingly,
the codes 2 and 4 have more than 10% in these regimes. This is a sign of significant residual
interaction energies near the nth level, suggesting the importance of an off-diagonal matrix
element study. For odd N, the standard occupation is the largest only for the chaotic case.
The codes 0, 1, 2, 3, and 5 give the ground state spin 1/2, and the probabilities are roughly
distributed over the five configurations (~ 15%) for the near integrable case, and the code
0, 1, and 2 are dominant for the mixed case. Contributions of the rest of the higher spin
configurations are small except for the code 4 with spin 3/2. The code 4 is simply to promote
an electron at (N — 1)/2th level to (N + 3)/2th level to change the orientation of spin from

down to up and reduce the residual interaction.
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Figure 13.5: Distribution of ground state orbital occupation for the TRNI quartic oscillator
system having even number of electrons. The nine configurations of orbital occupancy are
shown on the horizontal axis with code numbers, and the arrow represents electron spin; see
text. Three dynamical regimes are considered: near integrable (top), mixed (middle), and
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Figure 13.6: Distribution of ground state orbital occupation for the TRNI quartic oscillator
system having odd number of electrons. The nine configurations of orbital occupancy are
shown on the horizontal axis with code numbers, and the arrow represents electron spin; see
text. Three dynamical regimes are considered: near integrable (top), mixed (middle), and
chaotic (bottom).
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13.3.1 Orbital Occupation Scenario

It has been observed that the ground state orbital occupation was greatly affected by the
size of matrix elements M;;. By looking at the process of how electrons fill orbitals, we
further investigate the mechanism of ground state configurations and the role of the matrix
elements. In Figs. (13.7, 13.8), successive orbital fillings of the electrons are demonstrated
for near integrable and mixed systems. These two dynamical regimes, especially for the
near integrable case, are chosen since dramatic non-standard fillings are likely to occur
due to the considerable size of matrix elements. Let us first study the case of the near
integrable system. The electrons are added one by one from N=124 to 135. When N=124,
the standard occupation gives the ground state, and from N=125 to 128, the system tries to
avoid occupying the 64th orbital and fills neighboring the 63rd and the 65th orbitals. When
adding the 129th electron, the system has two choices, either to locate at the 64th or the
66th orbital. If the electron fills the 66th level, it costs the system an extra single-particle
energy of egs — €54 (note this is larger than €gs — €64 Or €64 — €63), While if the 64th orbital
is filled, the system pays more energy for the residual interaction. In the current case, the
electron occupies the 64th level. From N=130 to 133, the system again stays away from
filling the 64th orbital. If two electrons occupy the same orbital, their spin orientations
must be opposite to each other. This invokes the diagonal elements M;;, and it gives a
large contribution to the residual interaction energy. Since Me, ¢4 is pronounced, the system
refuses to place two electrons at the 64th orbital for a while. When the 134th electron is

added paying the expensive diagonal contribution to the residual interaction, it increases the
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ground state energy E(134). As a result, a large spacing fluctuation is produced at N=133
(since A2E(133) = E(134)+ E(132) —2E(133)). For N=135 or above, electrons are expected
to avoid filling the 66th level because of the substantial size of Mgses, and it should follow
a similar orbital occupation process as that of the 64th orbital. The situation of avoiding a
particular orbit leads to the following observation: the off-diagonal elements M;; associated
with the large diagonal element M;; must have large values especially near the diagonal i ~ j.
This will be investigated more in the context of the conditional probability; see later in this
section.

Now, let us consider the orbital occupations for the mixed system. Knowing that Meges
is large, the system fills the 67th and 69th orbitals avoiding the 68th level for N=132,133,
and 134. Interestingly, the 135th electron fills the 68th orbital first instead of the 67th,
but as soon as the next electron is added, it escapes to the neighboring orbital. Except
for the N=135 case, the orbital occupation follows similar behavior as seen in the near
integrable case. For the chaotic system, the localization of wavefunctions is not as strong as
the near integrable or the mixed systems. Thus, the orbital occupation scenario does not
differ significantly from the standard up/down filling. At most, weak orbital avoidance can
occur.

Overall, the localized states cause the orbital avoidance in the electron filling process.
Given the ith orbital which is associated with large M, it has a tendency to refuse having
even one electron occupied. Once filled, the orbital still remains singly occupied for a long

time, and the system prefers to polarize the newly added electrons in the neighboring orbitals.
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Figure 13.7: Electron orbital occupation scenario for the TRNI quartic oscillator system in
the near integrable regime (A = 0.20, reflection symmetry (+, +), and { = 0.8). The main
(left) figure shows orbital occupations of the ground states for the N electron systems with
N from 124 to 135. The horizontal line represents energy levels, and the vertical axis is
adjusted such that the location of each line corresponds to its energy value. Each triangular
point represents an electron, while the head of the triangle indicates the spin orientation, up
or down. The right figure shows scaled M;; diagonal elements. The scaled magnitude of Mj;
is given by the horizontal axis, and the orbital number i is adjusted to match the vertical
axis of the left figure. (The figure is modified from the original generated by D. Ullmo with
permission.)

It should be mentioned that this situation is special when the screened potential is local. The
local approximation makes the direct and exchange interaction equivalent, and the residual
interaction becomes effective only when two electrons have opposite spins. At some point,
the ith orbital becomes doubly occupied paying all the interaction energy saved, and the

peak spacing shows a large fluctuation as a consequence.
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Figure 13.8: Electron orbital occupation scenario for the TRNI quartic oscillator system in
the mixed regime (A = —0.20, reflection symmetry (+,+), and { = 0.8). The main (left)
figure shows orbital occupations of the ground states for the N electron systems with N from
132 to 142. The horizontal line represents energy levels, and the vertical axis is adjusted
such that the location of each line corresponds to its energy value. Each triangular point
represents an electron, while the head of the triangle indicates the spin orientation, up or
down. The right figure shows scaled M;; diagonal elements. The scaled magnitude of M;; is
given by the horizontal axis, and the orbital number i is adjusted to match the vertical axis
of the left figure.
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13.3.2 Conditional Probability

Since the study of orbital occupations indicates the importance of the off-diagonal matrix el-
ements, we look closely at the particular off-diagonal elements by considering the conditional
probability of the matrix elements. As shown in Fig. (13.9), the large off-diagonal elements
M;; in the ith row are associated with the large diagonal element M;; giving several peaks on
both sides of the diagonal. The size of the off-diagonal peaks reduces far from the diagonal.
On the other hand, the off-diagonal elements associated with the small diagonal element
M;; show no such pronounced peaks. The conditional probability is obtained as follows.
Given a dynamical regime, large diagonal elements are selected by scanning through all M;;
except for the first 50 orbitals. For each selected row number i, one collects off-diagonal
elements M;; over the jth column restricted to near diagonal by 0 < li - j| < d with d = 10.
One repeats this process on each of the 12 data sets to construct the ensemble. We also
collect small data sets related to small M;; to see the difference in two statistics, “large”
and “small” distributions. Figure (13.10) shows the distributions in the three dynamical
regimes. The “large” off-diagonal distribution has a long tail on the right side representing
the manifestation of localized states, while the “small” distribution does not have such a
tail and it is basically the same behavior as observed in Fig. (11.11), the distribution of the
off-diagonal elements near the diagonal. The variances of the “large” (“small”) distribution
are, 0.024 (0.0061), 0.027 (0.0057), and 0.017 (0.0022) for the near integrable, mixed, and
chaotic cases respectively. The differences in “large” and “small” distributions are enhanced

as the system gains regularity because it is more likely to form localized wavefunctions in the
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integrable case than the chaotic case. In addition, the peaks of two distributions come close
as the chaoticity is increased. The mean values are 0.43 (0.49), 0.45 (0.49), and 0.48 (0.50)
for the “large” (“small”) distribution in the near integrable, mixed, and chaotic regimes. We
note that the case of the near diagonal width condition, d = 30, showed essentially the same
distribution curves.

Let us summarize the connection between the orbital avoidance and large matrix ele-
ments. Suppose the ith orbital corresponds to the large diagonal element M;;. There are
two cases of the orbital avoidance: first, when no electron occupies the orbital, and second,
when one electron is already present. In the first case, the system tries to locate newly added
electrons at the neighboring jth levels (j ~ i but j # ¢). This is because some of the M;; are
large, and placing an electron in the orbital requires paying an expensive energy cost due to
the interaction with the neighboring electrons having opposite spin. The existence of large
off-diagonal M;; was confirmed in the right tail of the “large” distribution of the conditional
probability. In the second case, the system again refuses to locate an electron in the ith level.
If an electron needs to occupy the orbital, it is necessary to pay not only the interaction
energy with neighboring electrons, but also the most expensive diagonal contribution. If
only the diagonal elements are the large quantities and the off-diagonals are not, the first
case of orbital avoidance would not happen, and the second case of singly occupied orbitals

should be resolved without paying the extra energy cost for the neighboring interactions.
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Figure 13.9: Slice of M (scaled) matrix at ith row. i is determined such that corresponding
M;; gives either a large or a small value compared to other M;;. M;; are calculated for the
TRNI quartic oscillator system in three dynamical regimes. Top figure is for A = 0.20, i=93
(dashed) and 94 (solid), middle figure is for A = —0.20, i=83 (dashed) and 85 (solid), and
bottom figure is for A = —0.80, i=71 (dashed) and 72 (solid). For all three cases, the solid
line corresponds to large M;; and the dashed line corresponds to small M;;. The system’s
reflection symmetry is (+, +) for each case.
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Figure 13.10: Conditional probability of off-diagonal elements M;; (scaled) with |i — j| < 10
(plotted on log scale to show tails). Calculations are done in three dynamical regimes, near
integrable (top), mixed (middle), and chaotic (bottom). Two kinds of M;; are collected by
looking at the index i: ¢ which gives either large or small Mj;, and ¢* is used to indicate this
restriction. Probability density is plotted for large M;; (solid) and for small M;; (dashed)
in each figure. The criterion of “large” (“small”) is given for each dynamical regime by
M; > 2.0(< 1.2), M; > 1.8(< 1.2), and M;; > 1.2(< 1.0) for the near integrable, mixed,
chaotic regimes.
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Chapter 14

Conclusion

Motivated by the discrepancy of the constant interaction model in predicting the statis-
tical behavior of the CB conductance peak spacing, we pursued a many-body theory which
explicitly includes the electron-electron interaction in the framework of the density functional
theory. Our primary interest was to probe the missing physical factors and to investigate
further the statistical behaviors of quantum dots. The study has proceeded in two stages.

In the first part of this report, we have developed an approximate series expansion for
studying the ground state of interacting systems using the idea of the Strutinsky shell cor-
rection method. We tested the validity of the Strutinsky scheme by numerical calculations of
interacting electron systems in a one-dimensional, externally applied quartic potential. By
varying the electron charge strength, we were able to confirm the stability of the method. It
approximated extremely well the quantum mechanical DFT quantities using [semi]ciassical
Thomas-Fermi data for three different charge strengths. One exceptional circumstance giv-
ing less reliable results was noted with respect to a barrier in Vg approaching the chemical
potential. The calculations show a tendency for the series to converge as the electron number
increases. This is consistent with expectations for systems with large numbers of particles
because of the increasing reliability of the Thomas-Fermi calculations as the system goes
deeper into the semiclassical regime.

The method discussed could serve two purposes. On the one hand, it gave us an efficient
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way to proceed with numerical calculations, and it is conceivable that this approach could
be of some help for larger scale, realistic DFT calculations [74-77,80]. On the other hand,
it also provides some physical insight by decomposing the total DFT energy into various
contributions, each of them receiving an intuitive interpretation.

In the context of quantum dots, for instance, one of its simple but presumably useful
applications could be to justify, and make more precise, the constant interaction model.
Indeed, this is usually presented as an ad-hoc model motivated essentially by its simplicity.
Here, up to some reinterpretation of what is the capacitance of the dot, we see that the
constant interaction model can be understood as the first-order approximation in a Strutinsky
development of a DFT calculation. One obtains, in addition, that the various parameters of
the model (classical energy and potential governing the motion of the independent particles)
are specified, and, in principle, can be computed explicitly. This makes it possible, for
instance, to study the sensitivity of the dot’s energy to the variation of an external parameter
[89].

In the same way, the second-order correction term gives insight into the “residual” in-
teractions between electrons. In the context of DFT it gives some basis to the fact that
electrons in quantum dots behave as Landau quasi-particles interacting weakly through a
screened Coulomb interaction. It moreover explicitly specifies how the screening process is
affected by the confinement of the electrons, which might be relevant in the limit where the
screening length is not much smaller than the size of the dots.

In the second part of the report, we have applied the Strutinsky method to study quan-
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tum dots and understand the statistical properties of the system focusing on the behavior
of the residual interactions. Knowing that the irregularly shaped dot region is defined by
the negatively applied gates, the confinement produces the steep but still smooth potential
for the electrons. For the theoretical description, we have employed the two-dimensional
coupled quartic oscillators as the effective potential within a non-interacting quasiparticle
picture, realizing the smooth and steep wall confinement. Among the standard theoretical
approaches, RMT has been recognized as one of the most powerful tools to investigate the
statistical aspects of quantum dots based on the assumption that the irregularity of the
dot shape introduces chaos in the system. However, many of the dots fabricated for the
measurements are weak disordered systems, and they retain some regularity in the corre-
sponding classical dynamics. For this reason, the choice of the quartic oscillator has the
advantage that the degree of chaos can be tuned continuously from near integrability, mixed
to complete chaos. In addition, it gave us a means to investigate the role of dynamics in the
statistical behaviors of the system, and it turned out to be the most important effect in our
present study.

In experiments, each dot comes in various shapes, and they give different patterns for
the conductance peak oscillations. Measurements are performed on several dots, and data
are collected to construct the statistical ensembles. While there is no significance in em-
phasizing the specific geometry of each dot, their symmetry greatly affects the statistical
behaviors. According to RMT, when the system’s classical dynamics are chaotic, the result-

ing statistics are represented by GOE (GUE) in the absence (presence) of a magnetic field



preserving (breaking) time reversal symmetry. In the theoretical illustration, we studied two
systems which lead to GOE and GUE statistics, depending on the symmetry response under
anti-unitary operations. The reflection symmetry of the confining potential demanded one
to consider not only the time reversal symmetry, but also all anti-unitary symmetries to
distinguish two statistical classes.

The expression of the ground state energy has been modified from the Strutinsky descrip-
tion by adding the exchange interaction term to handle properly the electron spin degree of
freedom. Using the local approximation to the screened interaction, the residual interaction
only counts the interaction energy among electrons having opposite spin orientations. By
defining the matrix M;;, the study of the residual interaction was mapped onto the analysis
of the single-particle wavefunctions.

For the TRI quartic oscillator system, we have computed the matrix elements M;; for
three dynamical regimes, near integrable, mixed, and chaotic. The first thing we noticed
was the considerable size of the diagonal elements and their fluctuations. The magnitude of
the elements were of the order the orbital mean level spacing. Since the conductance peak
spacings are significantly affected by the energy of this order, it indicates the reason for the
failure of the CI model missing the residual interaction energy contribution. By plotting M;;
as a function of the orbital number, we observed the repetition of the pronounced peaks and
their response to the changing degree of chaos. As the system becomes more regular, the
M;; spikes are amplified and the peak oscillation pattern becomes simple. The lower bound

of the oscillation grows rapidly at the low energy domain, but soon it saturates and stays
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almost constant. The same trends were observed in all dynamical regimes. In the chaotic
regime, the peak values are roughly 1.8 measured in the unit of the mean level spacings while
in the mixed regime, the sizes are as large as 2.2, and 2.5 for the near integrable case. The
lower bound gives a value close to 1.5 for all three cases. The fluctuations of the diagonal
elements are related to the spatial distribution of probability amplitude of wavefunctions.
For the large M;; peaks, the corresponding wavefunction is localized in configuration space
having few nodes in one direction, while for the small M;;, the probability amplitude of
wavefunctions are evenly spread out over the classically bounded regions with many node in
every direction. For the distribution of the diagonal elements, the large M;; lead the long
tail on the right side, and its length grows as the degree of chaos reduces. This is because
localization is more likely to occur in regularized systems than chaotic systems. On the other
hand, most of the off-diagonal matrix elements do not show a strong sign of the wavefunction
localization (there are some exceptions; see later).

Although the TRI quartic oscillator system brought us a means to understand the con-
nection between the diagonal elements M;; and the eigenstates, the second order Strutinsky
energy correction method missed the higher order contribution which happens to reduce the
residual interaction energy and thus failed to correctly describe the ground state energy of
quantum dots in this particular symmetry class. Therefore, we had to switch into the system
which the higher order terms can be safely neglected. This was done by introducing a new
term to the Hamiltonian which breaks all anti-unitary symmetries, and we denoted this as

the TRNI quartic oscillator system. Interestingly, we found that even if the Hamiltonian
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breaks all anti-unitary symmetries, there existed the case leading to GOE statistics. To
achieve the GUE statistics, one must break all the symmetries not only in the Hamiltonian,
but also in the equations of motion. Although it is not our main interest of the current
research, the study of this “hidden” symmetry would give us an insight into the fundamen-
tal properties of dynamical systems. The TRNI system is characterized by two parameters,
the coupling constant A which determines the degree of chaos, and the symmetry breaking
strength . While increasing the coupling constant enhances the degree of chaos, boosting
the breaking strength regularizes the dynamics. With the analysis of Poincaré surfaces of
sections, we found three dynamical regimes which represent near integrability, mixed, and
chaos. In the study of the matrix elements M;;, the same trends were observed as seen in
the TRI case except for the enhanced tail in the diagonal elements distributions especially
in the near integrable regime. While the peak patterns and size showed similarity, the lower
values of M;; were reduced from 1.5 to 1.0 making the fraction of the tail portion larger in
the distributions.

Based on Berry’s conjecture, we constructed wavefunctions using the random superposi-
tion of plane waves to simulate the eigenstates of chaotic systems. The aim of this study was
to observe the asymptotic behavior of the diagonal elements M;; in the high energy domain
and to extract dynamical information through the comparison between the quartic oscillator
systems (dynamical) and the PWSA systems (non-dynamical). As opposed to the quartic
oscillator system or any dynamical system, the PWSA approach allows one to calculate eas-

ily the wavefunctions in a high energy domain, and, in principle, the approximation gains
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reliability as energy is raised due to the increasing randomness of wavefunctions, which is
related to the ratio of wavelength to the system size. The diagonal elements M;; were gen-
erated for three different energy domains, low (i = 1 to 600), middle (i = 2000 to 2500),
and high (i = 5000 to 5500), where the low energy range matched the dynamical quartic
oscillator systems. Since there is no spatial reflection symmetry in the PWSA system, the
statistical property of the wavefunctions are characterized by the response under the time
reversal operation. When wavefunctions consist of real (complex) plane waves, the corre-
sponding dynamical system is the TRI (TRNI) quartic oscillator, leading to GOE (GUE)
statistics. For the system with real random waves, M;; did not show any pronounced peak
oscillations in all ranges. The fluctuations were much suppressed in amplitudes. and the
mean was evolving very slowly from 1.4 in the low energy domain to 1.5 in the high domain.
The distributions had no long tails, and the shapes were symmetric about the mean. As the
energy increased, the distribution width became narrower. The higher moments were grad-
ually decreasing, and the distributions were seeming to converge into the Gaussian shape
centered at the mean 1.5 in the high energy limit. In the case of complex random waves,
M;; showed similar behavior except for the following. The mean values were approaching 1.0
instead of 1.5, and the variance sizes were smaller in all energy scales. For both cases, the
comparison of the means and variances to the analytical expressions {94], which derived from
the correlation function of random waves, showed reasonable agreement, and the accuracy
increased as energy increased. Two important facts can be learned from the PWSA study:

one is that the distribution of M;; changes, at best, slowly into a Gaussian density in the
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high energy limit, and the other is that the pronounced peaks in M;; are unique to dynamical
systems.

Having the eigenenergy and the matrix elements M;; of the TRNI quartic oscillator
system calculated, the ground state energy of the quantum dot was obtained by finding
the orbital occupation which minimizes the total energy. The peak spacings were com-
puted by taking the second difference of the ground state energies, and the averaging part
was subtracted off to study the fluctuation behavior. Since most of the smooth varying
(semi)classical contribution was removed by excluding the generalized Thomas-Fermi energy
from the ground state energy, the remainders were the quantum mechanical oscillation part
and the constant shift due to the Weyl part of the wavefunctions. By using the linear re-
gression, the shift in the second difference was found to be 0.7A (A is the orbital mean
level spacing) and almost independent of electron number giving the slope of 1.0 x 1073.
The fluctuations of the second difference were obtaired for three dynamical regimes, and
in each regime, 12 data sets constituted the statistical ensembles. One can consider this as
taking the data from independent 12 quantum dots. The data showed different patterns of
oscillations, but there was a tendency that the fluctuation size reduced as the degree of chaos
was increased. The distributions of the peak spacings were symmetric about the means and
have widely spread long tails on both sides. The mean values were zero, and the widths of
the distributions were enhanced as the system gained regularity. As opposed to the predic-
tion of the constant interaction model, there was no strong bimodal structure observed. The

J-function peak is completely washed out, and only weak even/odd differences were detected.
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The wide width and the long tails in the spacing distributions are a manifestation of
localized wavefunctions. This can be understood by considering the electron orbital occupa-
tion behavior. We looked at a dot to study how electrons filled orbitals when the eigenstates
showed localization. Suppose the ith eigenstate is localized and M;; is large, one can observe
the orbital avoidance in two stages. First, the system refuses to fill even one electron to
the ith orbital. Then, once an electron filled, it remains singly occupied for a wide range
of electron number N, and the system polarizes newly added electrons by promoting them
to the higher energy levels. At some point where the system is no longer able to save en-
ergy by polarizing the electrons, the system locates an electron at the ith orbital paying all
the interaction energy stored up to this point. This process produces the deviation in the
ground state energy, and as a result, induces the peak spacing fluctuations. Interestingly,
the system even refused to fill one electron to an orbital when the corresponding M;; is large,
suggesting the importance of the off-diagonal elements. In fact, wavefunction localization not
only enhances the diagonal elements, but also affects the size of the associated off-diagonal
elements. This is confirmed by investigating the conditional probability of the off-diagonal
elements near the diagonal. We plotted the slices of M;; in two different rows: one at M;;
large, and the other at M;; small. While the off-diagonal elements associated with large M;;
have several pronounced peaks on both sides of the diagonal, the other off-diagonal elements
do not have such peaks. The off-diagonal peaks are reduced as the system loses regularity.
The distribution of the off-diagonal elements associated with the large M;; clearly showed a

tail on the right side representing the pronounced peaks, while for the off-diagonal elements
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associated with small Mj;, the distributions were narrowly peaked at their respective means.

As a result of the non-standard orbital occupations, the occurrence of the ground state
spin is no longer 50% spin 0 and 50% spin 1/2. Due to the orbital avoidance, the system
promotes electrons to the higher orbitals and causes the polarizations. The distribution of
the ground state spin polarization, together with the orbital occupation probabilities, showed
a considerable portion of higher spin state occurrences. As the system gains regularity, there
is more chance of having the non-standard occupation for the ground states.

In the end, we emphasize the following observations. In the dynamical system, the local-
ized states greatly affect the electron orbital occupation behavior of determining the ground
state. Thus, the standard up/down orbital occupation does not always represent the lowest
energy of the system. With the non-standard orbital occupation, the ground state spin po-
larization showed significant fractions of occurrence of the higher spin configurations. Due
to the large diagonal and the associated off-diagonal elements, the system avoided filling
particular orbits and polarized newly added electrons. As a consequence, the ground state
energy deviated and the second difference often showed large fluctuations. The peak spacing
distributions are symmetric about the mean with extended tails on both sides, and little
bimodal structure was found. This result agrees with the experimentally observed distribu-
tions. Since the eigenstate localizations are more likely to occur in regularized systems, the
near integrable and mixed systems showed more influence of this dynamical effects on the
statistical properties such as the occurrence of the non-standard orbital occupations and the

enhancement of the peak spacing fluctuations, compared to the chaotic system.
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There are still possibilities of modifying the system to make the model even more real-
istic. Although we employed the two-dimensional coupled quartic oscillator as the effective
potential in the Strutinsky method, one can add the scrambling effect, the deformation of
the potential due to the electron addition, to the system perturbatively. However, this con-
tribution is expected to be small for the systems containing a large number of electrons [94].
The other modification could be to introduce temperature effects to the system. In Ap-
pendix G, we tested the accuracy of the matrix elements by looking at the response under
finite temperature. Although it is not extended to the study of the finite temperature effect
on the ground state or the peak spacing distributions, it would be an interesting problem to
investigate. Finally, since we have used the local approximation to the screened interaction,
one removes this assumption and proceeds to Fourier transformation explicitly to obtain the
exact form of the screened potential. The local approximation was the special case making
the direct and exchange interaction combine. With the explicit form of the screened poten-
tial, the role of the localized eigenstates might act differently on the orbital occupations and

the peak spacing distributions.
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Appendix A

Functional Differentiation

Given the functional F[n] with n = n(r), its derivative is defined as

%[n](r) _ !‘_‘,’5 Fln(r') + ed(r : r')] — Fin(r')] . (A1)
As a simple example, consider a functional
Fln] = / dr n(r)?. (A.2)
the derivative is give by
%[n](r) _ !‘_‘,’3 Jdr’ [n(r) + €d(r : r)]? — [dr’ n(r')? ~ 2n(r). (A3)

It should be mentioned that while a functional itself is a scalar value given a function n, the
derivative is both a functional of n and a function of r.
We also note the functional Taylor expansion. Given a functional F[n], the Taylor series

expanded about no where n = ng + An is

Fln] = Flno]+ [ dr %[no](r)An(r)

+ % [ [ drar %[ﬂo](r, r')An(r)An(r') + ... (Ad)
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Appendix B

Perturbation on the Single-Particle Energy

Consider a Hamiltonian H = p?/2m + V' (r) and its perturbed Hamiltonian H' = H +
0V (r). We denote the eigenvalues and eigenvectors as ¢; and ¢;(r) [¢; and ¢!(r)] for H (H').

To second order in 6V, the perturbed eigenvalues are
€ =€+ el + @ (B.1)
where

eV = (4il6V]es)
5 l<¢i|§‘_f|«é,~>|2 ,

iw TG

K

(B.2)

assuming non-degenerate eigenstates.
Similarly, taking H' as the original Hamiltonian and H = H' — §V as the perturbed

Hamiltonian, one can write

=€ +eM 4P (B.3)

where

eV = —(¢ll6V]g))
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e® = € 4o(6V3). (B.4)

3

Subtracting Eq.(B.3) from Eq.(B.1), one obtains to second order in §V

€ —€ = % (cEl) - e:»(l))
1 4 (2 -
= 5((¢f|5V|¢i) + (#:|6V]9))) - (B.5)

Summing over i, one obtains

N
EulV +8V] - £,lV] = 33 (46VI6) + (@l6VIe))

- % [V n(e) +n'(e))ar . (B.6)

206



Appendix C

Optimization of Radial Basis: Choice of Angular Fre-
quency

In the semiclassical limit, an eigenstate of some N-dimensional quantum system has a
corresponding 2/N-dimensional energy surface in phase space, i.e. the Wigner transformation
of an eigenstate is localized on the classical energy surface [123]. In the case of the two-
dimensional quartic oscillator, a unique four-dimensional closed energy surface corresponds
to each state. Consider the construction of coupled quartic oscillator eigenstates in terms of
a harmonic oscillator basis. Since we employ a matrix diagonalization technique, choosing
the best suited basis is critical. Suppose we are interested in describing one particular
eigenstate. Having the corresponding energy surface specified semiclassically, one needs to
find minima and maxima of basis energies whose surfaces entirely enclose the given shell
as lower and upper bounds. Then the eigenstate will be reasonably well represented if all
the basis states whose energies are within the bound contribute to the expansion series of
eigenstate. In other words, the eigenstate is built in the subspace spanned by the subset of
basis vectors which are defined by the energy bound. and this subspace is truncated from
the space constituted by the complete set of harmonic oscillator basis vectors. When one
considers this in terms of overlap between basis vectors and the eigenstate, the contributing
basis vector subset gives non-zero overlap and the rest are negligible (see section 3.3 in [114]).

For computational convenience, it would be desirable that the number of contributing basis
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states is as small as possible without sacrificing the accuracy of resulting wave function.
Therefore, one should choose the angular frequency of the harmonic oscillator to minimize
the number of contributing basis states.

First, let us consider the case of quartic oscillator without anti-unitary symmetry breaking
term, and later expand this argument to include the breaking term. Define the Hamiltonian

for the quartic oscillator and the harmonic oscillator basis as,

Hoo = 2 +alZ +by'+ 220222 (C.1)
Qo. = 3. b 2y .
_ P mw? 2 2
Hyo. = > + (z° +y7) . (C.2)

Suppose eigenstates from the lowest to some energy level Eq o. are required, one only needs to
find the upper bound of the basis. The energy surface of the upper bound completely encloses
the surfaces of all the eigenstates, and circumscribes the outer-most surface of eigenstates.
These two surfaces contact only by points and they should never cross each other. Using a
Lagrange multiplier method, one finds these phase space points which maximize Hy o. under

the constraint that the energy is fixed as Eqo. = Hq.o.- Set a Lagrange multiplier § as,

VHqo. = EVHyo. (C.3)
or
Pz _ P (C.4)
My m
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Py _ Py (C.5)
my m

13 2 2
4a (T + Azy ) = E{mw’s (C.6)
4a (by® + Az?y) = Emw’y . (C.7)

We have 5 equations (including Eqo. = Hqo.) and 5 unknowns, z,y,p;,py, and £. There

are 8 solutions for the extrema of Hy o,

Efb = Eqo. (C.8)
Efy. = %’Eq.o. 1_6(_1771_0% (C.9)
EQ, = '-"nfzq,o, 1’;‘2“7:0 (C.10)
By, = MEgo+ ML bti 1)
EFL, =0 (C.12)
ES), = "‘;" E°°-Il; (C.13)
E{, = m; E°°b (C.14)
£ — 22‘/qu b-il--—-j\fl\ - (C.15)

With the conditions 0 < b < 1 and —1 < A < 0, the global maximum of Ey o, is

3t b+ 1 —2)
16amo 1- A2

Ego. = %Eq_o‘ + (C.16)

Now that the outer energy shell is found, the angular frequency w which minimizes the
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number of contributing basis functions is given as follows: the frequency, Q@ = mw which

minimize Eu,o,/w is

16 , 1-x i
Q= [3 amob T % — 2/\Eq,o,] (C.17)
and setting m = mg =1 gives,
16 1- A i
= [?H—_'ﬁEQO] - (C.18)

With this choice of angular frequency, two energy values are related as,

4m
Eyo.= §Tn0‘EQ.O. . (C.19)

Having Weyl part of counting functions for both quartic and harmonic oscillators, Nqo. =
E¥Y? and Nyo. = E} o /2w* respectively, one can estimate the number of participating

basis to construct 1\7q_o_ of quartic oscillator eigenstates by the following formula,

- 2 / 3b+ L —2) _
1VH,0, = 6 ;—l—b_—l\z—"NQ.o, . (C.?O)

Now let us consider the system with the symmetry breaking term. Expressing the Hamil-

tonian in terms of polar coordinate,

_ P P 1 2 2 .
Hqo. = e + Imer? + f(8)r* + ey/ar®p, cos* 0 (C.21)
_ P P mw? ,
Hoo = oo+t 57 (C.22)
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where

2
f@) =a [(% + %) cos® 6 + bsin* @ + 2 sin® § cos? 0] . (C.23)

Using the Lagrange multiplier method, one obtains 5 equations (including Eqo. = Hq.o0.)

and 5 unknowns, p,,ps, 7,0 and &,

Pr | eartcos?d = el (C.24)
Mo m
Po _ . Do
mer?  mr? (C.25)
4£(0)r® + 2¢\/arp, cos® 8 = Emwr (C.26)
2
2\/ar? ((b — A)sin?8 - [(% + %) - A] cos? 0) = ep, . (C.27)

Assuming r # 0 and € # 0, the first two equations gives,

pe = 0 (C.28)

r2cos?6

£ = = +evam (C.29)
my

e

and so, the third equation becomes,

2 2,2
(4 f(0) - eﬁmzuzco: 0) r2 =" _ 9¢/ap, cos? 0 . (C.30)

r mo

Solving above equations is rather involved. so let us consider perturbatively in e. Set the
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variables as,

r o= O e +2r® 4 (C.31)
9 = 69 +efV + €202 4 . (C.32)
pr = P +eplV + P+ (C.33)
and they give
r2 = 1O 42 @p) 4 (C.34)
o= O g @ (C.35)
sin2@ = sin20® + 2¢8V sin 6 cos 69 + ... (C.36)
cos?8 = cos®0® — 260V sin 0 cos 69 + .. (C.37)
sin®d = sin®0© + 460" sin® 0@ cos 4 + ... (C.38)
cos’d = cos'0® — 468V sin 8V cos® 6 + ... (C.39)
and
£(8) = fO8) +ef1(0) + ... (C.40)
where
O = 4 (% cos* 0 + bsin' 60 + 2X sin? 60 cos? 6 (C.41)
O = 49D sin6® cos 6 [(b — A)sin?0® — (% _ ,\) cos? 0(0)] (C.42)
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Equation (C.27) can be decomposed by the order in e. For the lowest two orders,

2/ar®” [(b — N sin? 69 — (3 ~ 3) cos?6®] =0 (C.43)

4y/ar®r) [(b — A)sin?©® — (% - A) cos® 0(0)]

+4/ar®gM) sin ) cos 6 (b - %) =pl® (C.44)
and they give
L_)
Sill2 0(0) = b-l'-b%——u (C.45)
b— A
cos? 90 = b+ I_a2x (C.46)
b
1 (0)
n _ r ,
? v (b -3 ) r©®2%sin (0 cos 4O (C47)
Similarly, Eq. (C.30) is expressed as
2, 2
4fO 0% = "‘m‘;’ (C.48)

2 2 r(0)? ¢os2 (0)

8FOr () 4 402 _ fam2,, Q) = —2y/ap® cos? 8  (C.49)
pr

and

/ m2w? _

W 1 (1),.(0)2 2 27 cos? 9 (0 o2 ()
i = gFor® —4f V0% £ am?w T—%/Ep, cos’ @ (C.51)
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Since we are given Eqo.,

©
p 4
EQh. = el A (C.52)
© = |2ma [ E© miwt C.53
= P = \[2mo | Bqo. ~ fgrarm |- (C.53)

Having the expressions for r(®, r(!), §© () p(® and p,y, now look at the variation of harmonic

oscillator energy with up to first order,

v 2
mw -
Eno. = 2’; + 2 (C.54)
2
mg . (0) mwW™ 5, Mg ) 4
- 0 0 .55
m O 2 r mf 4 (C.55)
= E{b +€Ejh + .. (C.56)
where
2
© _ Mop . MY )2 _ ™0 0.0 5
En.o_ m QO. T 2 r mf T (C.D7)
4 (0)
EY, = r@0 (mwz_——'";{ r<°>2) —o. (C.58)

Since the first order term vanishes, there is no variation of harmonic oscillator energy, and
so as angular frequency w. Therefore, one can use the same angular frequency for both cases

with or without the symmetry breaking term at this level of approximation.
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Appendix D

Number Variance Statistics

In characterizing the statistical properties of a system, one of the most important pro-
cesses is to measure spectral fluctuations. There exist various kinds of fluctuation (or corre-
lation) measures [112,136], and each approach has different advantages depending on which
statistical aspect one is interested in.

Suppose one has a spectrum, E|,..., Ex for a given system. Since every system has dif-
ferent spectral behavior, one must unfold them to be able to compare fluctuations among
different systems. Let us denote the unfolded spectra as r,....zy, and express the proba-

bility of finding each spectrum z; in the interval [z;, z; + dz;] as
Px(zy,...,zN)dTy. . dTy. (D.1)

Then, one way to measure the statistical property of the spectra is to use the n-level corre-

lation function defined by

V!
Ru(zy, ..., Tn) = ‘(NITH)!/PN(-TU s IN)ATpyy ... dTy (D.2)

which gives the probability density of finding the n levels z,, ..., T, regardless of the location

of all other levels. In terms of the correlation functions, the pure n-point functions are given

215



R.(r)= /: /: Rp(zy, ..., Tp)dT) ...dTy. (D.3)

Using this function, R, (r)/n! gives the probability that n levels are contained in the interval
of distance r (for small r).

It is often convenient to introduce the n-level cluster function Y, which is the nth order
cumulant derived from the correlation functions. For our purpose of studying energy spectra,

the case with n = 2 suffice,
Ya(z1, 22) = —Ra(x1, x2) + Ri(z1) Ri(z2). (D.4)

The cluster function Y; vanishes when the separation |z, —z;| becomes large, giving the means
to exclude the lower order correlations. When the spectral fluctuations are independent of the
location of the spectrum, the cluster function only depends on the separation |z| = || — z;|.

Expressing the density distribution of spacings between two levels z;, ¢+, and z; as p(k; s)

where s = z; 441 — z; and (k =0, 1, ...), the previous functions can be rewritten as

Ro@) = 1 - Ya(z) = 3 p(k; |2])- (D.5)
k=0

In the case of £k = 0, p(0; s) represents the nearest neighbor spacing distribution and is
written as p(s).

The number variance £2(r) is constructed as the variance of n(r), the number of levels
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contained in the interval of distance r.

22(r) = (n?(r)) — (n(r))*.

The number variance is connected to the cluster function by

2(r) = r- 2[(1‘ — s5)Ys(s)ds

L) = —2nlr).

It is also related to R, by

Ra(r) = Z3(r) + r(r — 1).

(D.6)

(D.7)

(D.8)

(D.9)

The number variance can be considered as the fluctuation of the counting function by in-

terpreting n(r) as the counting function and r as the energy measured in the unit of mean

level spacing.

For the purpose of comparison, one can construct an uncorrelated spectrum by

Tiv1 =Zi+ 8, 1 =0, (1=1,2,..)

(D.10)

where s; are random numbers whose probability density gives e~*. This is called a Poisson



spectrum, and the correlation functions are given as

Ry(z1,...zn) = 1 (D.11)
Y'z(l’l,l’g) = 0, (D.l?)
and the spacing distributions are
p(s) = e™* (D.13)
Ro(r) = (D.14)
22(r) = r (D.15)

As the reference curves, we show the expressions obtained for the Gaussian ensembles
from RMT. The conventional notations: 3 = 1 represents Gaussian orthogonal ensemble
(GOE), and 8 = 2 is for Gaussian unitary ensemble (GUE), (symplectic case is omitted
here).

The nearest neighbor spacing distributions:

P(s) = %se"("/“)’z (GOE) (D.16)

P(s) = i—zsze"“/")’z (GUE). (D.17)
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The two-level cluster function:

. 2 .
Yao(z) = (51::1) - [Si(‘/rz) - %n’ Sgn(z)] [CO:;rx _ S(‘:;;f] (GOE) (D.18)
Yy(z) = (Sifr;“)z (GUE) (D.19)

where Si(z) = [y dtsint/t. For z < 1, the functions are approximated as

Y(z)—1—ﬁz+ﬁ3-ﬁ*+ (GOE) D.20
=TT et T8 T (D-20)

and for z > 1,
1 1 +cos®nwz
Yao(z) = z)? - wz)’ + ... (GOE) (D.21)
Ry(r) with r < 1:

. 2
Ry(r) = Er“ + ... (GOE) (D.22)
" 2
Ry(r) = ﬁr* +... (GUE). (D.23)

Number variance Z}(r):

. 2 .
Y2 (r) = 28%.,(r)+ [%m-] - §l—(;r1£7;) (GOE) (D.24)
Bi.(r) = ;:—2- [ln(277r) + v+ 1 — cos (2nr) — Ci(2n71)]
+r [1 - %Si(?n’r)] (GUE). (D.25)
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where Ci(z) = v +Inz + [ dt(cost — 1)/t and v is Euler’s constant, v ~ 0.5772. For r > 1,

they behave as

2 2 w2 -1
Lo = = [ln Rrr)+v+1-— ?] +0(r™) (D.26)
$2_,(r) = ;12- (In (277) + v + 1] + O(™Y). (D.27)

The logarithmic dependence is an expression of the celebrated spectral rigidity of random

matrix ensembles.
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Appendix E

Moments of a Distribution

The moments are the quantities which characterize a set of numbers. These are especially
useful when the set of numbers show a tendency to cluster around some values.

For a given set of numbers z,, ..., Zy, the mean is given by
N
[.l=.’f=—z.l‘,'. (El)

This is also known as the first moment of the distribution.

The variance which characterizes the “width” of the set around the mean is
1 N
Yo = ¥ Z(z.- - z)2 (E.2)
=1

This is the second (central) moment. It is “central” because the mean value is subtracted
from each data. The standard deviation is given by o = /i>.
The third (central) moment measures the degree of asymmetry of the distribution around

the mean,

1 N
By =5 ;(zi - z)3, (E.3)

and the skewness is v, = u3/a3. For a distribution that has an asymmetric tail on the right

(left) side, the skewness gives positive (negative) value. While the mean and the standard
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deviation have the same dimensionality as the original data, the skewness is defined as non-
dimensional quantity.
The fourth (central) moment characterizes the degree of peakedness relative to a normal

distribution. It is defined as

1 N
Ba= > (zi — E)*, (E4)
i=1

and the kurtosis is given by 7, = u4/0* — 3 where the subtraction of 3 makes the kurtosis
of a normal distribution zero. The positive kurtosis represents that the distribution is more
peaked around the mean value compared to a normal distribution, and the negative value

means more flattened distribution. The kurtosis is also a non-dimensional quantity.
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Appendix F

Fluctuations of M;;

Based on Berry’s conjecture, Srednicki [133] derived the spatial correlation functions in
quantum dots. If the wavefunctions can be treated as the Gaussian distributed quantities,

the following two point correlation function holds for [r — r'| < L,
A{pu(r)g;(r)) = b Jo(krlr — ¥')), (F.1)

where A is the two-dimensional dot area, L is the system size (A ~ L?), and kf is the Fermi

wave number. The expressions derived were, in the case of time-reversal invariance (TRI),

’ min(n,m) 2n)!(2m)!
A (1o(r) o (x) ™) = 2, 2,,+,,.-zq(,(, f)qg!(Tn) ~ 9)'(2q)!

q=

Jo'(kele —']),  (F-2)

and in the case of broken time-reversal invariance (TRNI),

min(n,m) 12(m!)2
A (OPIEO™) = 3 it g

Jo' (krr — ¢']). (F.3)

Applying the spatial correlation functions, Ullmo and Baranger [94] computed the means
and variances of the matrix elements M;;. Here, we introduce the brief derivation of mean

and variance of the diagonal elements AM;;. Setting n = m =1 in Eq. (F.2) and (F.3), the
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spatial correlation functions give

A*(|o(r)P16()*) = 1+28(kelr ~r'l)  for TRI

= 1+ Jg(kplr —r'|) for TRNI,
and lead the local correlations at r =1’ as,

.42<|¢(r)|“> = 3 for TRI

2 for TRNI.

The means of the diagonal elements M;; are obtained,

_ 1 o _ 3 3
(M) = 3o [ar (o) = Vo) =7 o TRI
2
= W=A for TRNI
= (M) = g(Mg“N'

(F.4)

(F.5)

(F.6)

(F.7)

(F.8)
(F.9)

(F.10)

where the orbital mean level spacing is A = 2/AN(0) taken into account the electron spin

degree of freedom in N(0), the local approximation to the screened potential is assumed,

and N(0) = p¥.

For the variance of M;;, one needs to compute (M32). The spatial correlation functions
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for n = m = 2 give

A (lo()*o()*) = 2403 +72J+9 for TRI (F.11)
= 4J3 +16J2+4 for TRNI, (F.12)
and
2 — 4 2
(MZ) = s N(O / drdr’ (243 +72J3 +9)  for TRI (F.13)
— 4 2
= o N(0)2 [ drdr’ (443 +16J2 +4)  for TRNL, (F.14)

where the argument of the Bessel function is kr|r — r/|. The contributions of the constant
terms are canceled when (Mj;)? is subtracted off, and the terms with the second power of
the Bessel functions are discarded because of the normalization conditions for both TRI and

TRNI cases. Then, the variances are given by

Var(M;) = (M.?,- — (M)
= = N(0)2 [as' [ ds Ji(kes)  for TRI (F.15)
= m / ds’ / ds Ji(krs) for TRNI, (F.16)
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where s =r —r’ and s’ =r + r’. Since the Bessel function can be approximated as

4
1 rkl
Jo(z) =14 0 r>1 (F.17)
sin!z-w(ﬂ -
| \/;;/5 otherwise

we perform the integration as follows,

1/k L o0
/ ds Ji(kps) = 21r( /0 £l et /L )J{,‘(kps) sds (F.18)

L 3
4 —
~ 2 /l/kp ds s(J0 (kps)> = 8 In(kpL) (F.19)

where the first integration vanishes because 1/k% = (A/27)? < 1 and the second integration

is calculated taking advantage of its oscillating behavior

<J3(1)>:<4sin‘ (.’B—Tl’/4)> _ 3 (F.?O)

(rz)? ~ 2(nx)?’

Thus, the variances are given as

3A? In (krL)
.. . — 9
Var(M;;) D T (F.21)
3A2In (kL)
. 4_71’ (ka)2 for TRI (F.22)
= Var(MI™) = 6- Var(MTRM (F.23)

where [ds’ = A = L%. In Ref. [94], the expressions of mean and variance of the matrix
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elements including off-diagonals are given as

(M;;) = (1+6;5)A/2 (F.24)
2
Var(M,;) = %'-‘(‘L"T")’;)(Hsaﬁ), (F.25)

where we note that they are computed exclusively for the time reversal non-invariant systems
in the chaotic regime. In addition, there is no dynamical confining potential or boundary
conditions (or one can think of this as the infinite well confinement with vanishing wave-
functions at the boundary).

While the analytical expressions are directly applicable to the system of plane wave
superposition approximation, they are not suitable for the coupled quartic oscillator systems.
Since the formulae are derived for the steep wall potential, one needs to adjust them for the
smooth potential. Let us consider the following integral,

1 1 dr 1 R? dr .
I= (krL)2 ~ A2 /E—v>o k2~ A22m /z_m E-V(r) (F.26)

where the Fermi wave number is given by

_p_\/2m(E-V(r)
TR h

ke : (F.27)
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To use the scaling property of the quartic oscillator, we set r = E'/4r,,

V() = EV(ro) (F.28)
A = /E Ly dr=EY /S oy dro = E'24, (F.29)

and then
I= 2%'%';@ /l-V(ro)>o l—d—;?(l'(,)' (F.30)

For the case that the coupling constant is not too far from A = 1.0, the potential can be
taken as V = ar?, and it gives E = ar},, at the boundary. The area of classically allowed

region are then

A = mri, =m/E/a (F.31)
4 = n/Va. (F.32)
These give the integral
[ - B Ji __dro (F.33)
T 2mm2E¥? Ji—v(re)>0 1 — V(xo) .
K2 a T
h2 a1/2

Using the counting functions of the quartic oscillator N(E) ~ E%/2, the integral is written
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In (krL)
~ o (F.36)
where
gz = KA -N/2m _ m (F.37)

37 R~ 3R
Even though the quartic oscillator potential has smooth wall, the wall is steep enough to

approximate the followings,

2mFE

ke~ T (F.38)
L ~ rmax=(E/a)'/? (F.39)
: 3/2 _
= (krL)? ~ TE _6N(E). (F.40)
h-al/2

Therefore, we obtain the expression of the variance for the (TRNI) two-dimensional quartic

oscillator system as

2
Var(M;;) ~ %;—ln(ka) - I-(1+36;) (F.41)
3A2[In (6N)]?
4“2[ Esz\‘r ) (1 + 36;;). (F.42)

For the TRI quartic oscillator system, the variance of the diagonal elements is given by

Var(MTR) = 6Var( MTRN).
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Appendix G

Finite Temperature Effects on M;;

For a system with N Fermion, the lowest NV energy levels are occupied in the limit of
temperature T — 0 ignoring spin degeneracy for simplicity. The electron density is expressed

as

N
n(r) = Y_loi(r)|? (G.1)
=1

where ¢; are eigenfunctions of the system. Using the Fermi occupation factor f(e — u) =

[ete—#)/k8T 1 1]-1 the electron density at finite temperature T > 0 becomes

n(r) = 3 16:(r)2F (e — 1) (G.2)
i=1

where the Fermi energy u must be determined by the normalization conditions of the electron
density N = [ n(r)dr. In the low T domain however, one can still approximate u >~ uy = €n.
On the other hand, as T increases, the quantum mechanical fluctuation part of the electron
density n°<(r) becomes smaller, and so its Weyl part n*(r) becomes good approximation

to n(r). Thus, one obtains

N
nV(r) =Y |:(r) P fe — pw) - (G-3)

=1
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With this relation, temperature effects on M;; is given by

N](b_)/dr [nw(r)] Z M;;f(e: — un)f(ej — pn) (G.4)

!,J‘-

where integration on the left hand side takes over classically allowed region uy —V > 0, and
the local approximation is applied to M;;. The Weyl part of the electron density is defined

as

n¥() = o [ dp O(un — H) (G.5)

where H = p?/2m + V and d is degrees of freedom. If the potential is assumed to be

independent of momentum, one obtains for d = 2

() = Sluw — V)] (G.6)
w
N@O) = pV= ZZ—N = 2:;2 . (G.7)

Then Eq. (G.4) can be approximated as

N

sy [ dr low = VP = 30 My fle = ) fles = paw) (G.8)

t,j=1t

where integration takes over the region with ux — V(r) > 0.
To proceed numerical calculation, one must evaluate thermal energy k7. First, we
consider two kinds of dots both attached to two leads respectively. If the dot is in diffusive

regime, that is to contain significant amount of impurities, an electron entered from one lead
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scatters elastically from the impurities, and so the mean free path of the electron becomes
| « L where L is the dot size. In this case, the system is characterized by the time
scale 7p, which is the time for the electron to diffuse across the system, and the associated
energy scale E. = h/7p is known as the Thouless energy. Similarly, for the dot in ballistic
regime, once an electron enters the dot, it travels through inside being scattered several
times from boundaries before exiting the dot. Assuming the boundaries are irregular shape,
the electron’s classical dynamics represents chaos. The characteristic time scale of this dot
is roughly determined by the time of flight across the dot tr, and the associated energy
scaled is the ballistic Thouless energy Ety = hi/tr. The connection between conductance
fluctuations of disordered systems and RMT are reported in Ref. [137-139]. The statistical
fluctuations of energy eigenvalues and eigenvectors of chaotic systems can be described by
RMT and show universality if system’s energy scale is below Ery. Thus, the Thouless energy
serves as an additional energy scale which is critical for RMT study.

Since we are interested in dots in the ballistic regime, we need to compute the time of
flight across the system. With the two-dimensional coupled quartic oscillator confinement,
V = a(z*/b + by* + 2)\z?y?), the shortest periodic orbit is on the x-axis (for 0 < b < 1), and

the classical period for this orbit is given by

¢ dz . r/3) [ 6 \'*
T=4/: ‘/i(E_%r‘) =2V2% et (E) (G.9)

where 1, is the classical turning point in £ > 0 region. One obtains the Thouless energy by
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setting tp =T/2,

_h T(3/4) faEN\'Y?
b= 752 TG/3) (T) ' (G-10)

We note that for the systems having boundary at z,y = 0 and restricted within the region
z,y > 0, the shortest periodic orbit is reduced by factor of two, so the Thouless energy
becomes twice as large as the above quantity. To use Eq. (G.8), one sets the temperature
near the Thouless energy kgT > Ery.

The relationship of Eq. (G.4) can be used to determine the accuracy of M,;; data sets
under the temperature broadening by studying the difference between both sides. Taking the
particle number as an independent variable, we compute the differences as a function of N.
For the system confined by the two-dimensional coupled quartic oscillator and without anti-
unitary symmetry breaking term, potential is independent of momentum, and so Eq. (G.8)
becomes a suitable approximation. Figure (G.1) shows the absolute difference divided by
value of the right hand side. Since the accuracy of semiclassical approximation decreases
as the system gets into the low energy domain in general, the data in small N show larger
error. The error reduces quickly as N increases and becomes stable for large N. The same
is true for a system with a symmetry breaking term; see Fig. (G.1). In the latter system, we
separated each parity class and considered them as independent systems. Thus the energy
domain belongs to the same ranges as in the former system, aithough the particle numbers
are reduced.

Our major concern here is how reliable M;; data are especially compared to the mean

level spacing of energy spectra. The curves show reasonable behavior within the idea of
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semiclassical theory, and it becomes stable in large N domain. Most importantly, no diver-
gence occurs. The source of amplified error for the system with symmetry breaking term is
originated in the crude approximation of the potential: the breaking term introduces mo-
mentum dependence to the effective potential. Rigorously speaking, one has to use Eq. (G.4)
and proceed with momentum space integration properly using Eq. (G.5). One last thing we
mention is the oscillation of curves. While the localization of wave function causes the pro-
nounced spikes in M;;, there are no such peaks observed in the current data. This is because
the summation of M;; averages the large value of diagonal elements, and as a result, only

the quantum fluctuation remains.
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0 l | ]
0 50 100 150 200

N

Figure G.1: Absolute differences between both sides of Eq. (G.8) as a function of the par-
ticle number N. The upper figure: confining potential is two-dimensional coupled quartic
oscillator. The solid line is for A = —0.53, dashed line is for A = —0.35, and dotted line
is for A = —0.05. The lower figure: confining potential is two-dimensional coupled quartic
oscillator with anti-unitary symmetry breaking term. The solid line is for A = —0.80, dashed
line is for A = —0.20, and dotted line is for A = 0.20. The strength of symmetry breaking
term ¢ is -1.0, and parity sequence (+, +) is used for all three cases. For both figures, the
data are divided by the value of right hand side and measured in percentage.
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