Recently published

  • Tibbits, G., Mohamed, A., Call, D.R., Beyenal, H., 2022. Rapid differentiation of antibiotic-susceptible and -resistant bacteria through mediated extracellular electron transfer. Biosensors and Bioelectronics, 197, 1, 113754, https://doi.org/10.1016/j.bios.2021.113754
  • Cano, E.J., Flurin L., Mohamed, A., Greenwood-Quaintance, K. E., Raval, Y. S., Beyenal, H., Patel, R. 2021. Hypochlorous acid-generating electrochemical catheter prototype for prevention of intraluminal infection. Microbiol Spectrum, 9(2), e0055721. https://doi.org/10.1128/Spectrum.00557-21
  • Eun Song, Y. E., Mohamed, A., Kim, C., Kim, M., Li, S., Sundstrom, E., Beyenal, H., Jung Rae Kim, J.R., 2022. Biofilm matrix and artificial mediator for efficient electron transport in CO2 microbial electrosynthesis. Chemical Engineering Journal, 427, 131885, https://doi.org/10.1016/j.cej.2021.131885
  • Mohamed, A., Ha, P. T., Beyenal, H. 2021. Kinetics and scale up of oxygen reducing cathodic biofilms. Biofilm, 3, 100053, https://doi.org/10.1016/j.bioflm.2021.100053
  • Raval, Y. S., Mohamed, A., Flurin L., Mandrekar, J.N., Greenwood-Quaintance, K. E., Beyenal, H., Patel, R. 2021. Hydrogen-peroxide generating electrochemical bandage is active in vitro against mono- and dual-species biofilms. Biofilm, 3, 100055, https://doi.org/10.1016/j.bioflm.2021.100055
  • Raval, Y. S., Mohamed, A., Flurin L., Mandrekar, J.N., Greenwood-Quaintance, K. E., Beyenal, H., Patel, R. 2021. In Vitro Anti-Biofilm Activity of Hydrogen-Peroxide Generating Electrochemical Bandage Against Yeast Biofilms. Antimicrob Agents Chemother, https://doi:10.1128/AAC.01792-21
  • Tibbits, G., Wall, N.A., Saunders, S., Babauta, J., Beyenal, H., 2021. Electrochemical detection of flavin mononucleotide using mineral-filmed microelectrodes. Journal of Electroanalytical Chemistry, 892, 115307, https://doi.org/10.1016/j.jelechem.2021.115307
  • Molina, D.E., Wall, N., Beyenal, H., Ivory, C.F., Flow injection electrochemical quartz crystal microbalance with ICP-OES detection: Recovery of silver by electrodeposition with redox replacement in a flow cell. Journal of Electrochemical Society, 168, 056518, https://doi.org/10.1149/1945-7111/abfcdd
  • Mohamed, A., Sanchez, E., Sanchez, N., Friesen, M.L., Beyenal, H. Electrochemically active biofilms as an indicator of soil health. Journal of Electrochemical Society, 168, 087511, https://10.1149/1945-7111/ac1e56
  • Shariq, A. F., Beyenal, H., Akin, I. D. 2021. Biofilm addition improves sand strength over a wide range of saturations. Biofilm, 3, 100050, https://doi.org/10.1016/j.bioflm.2021.100050
  • Mohamed, A., Anoy, M. M. I.. Raval, Y. S., Flurin L., Greenwood-Quaintance, K. E., Patel, R. Beyenal, H. 2021. Antimicrobial activity of a hydrogen peroxide-producing electrochemical bandage controlled by a wearable potentiostat in an in vitro membrane biofilm model. Biotechnology and Bioengineering, 118, 2815–2821, https://doi.org/10.1002/bit.27794
  • Mohamed, A., Zmuda, H. M., Ha, P. T., Coats, E. R. and Beyenal, H.2021.Large-scale switchable potentiostatic/microbial fuel cell bioelectrochemical wastewater treatment system, Bioelectrochemistry, 138, https://doi.org/10.1016/j.bioelechem.2020.107724
  • Raval, Y. S., Flurin L., Mohamed, A., Greenwood-Quaintance, K. E., Beyenal, H., Patel, R. 2021. In vitro antibacterial activity of hydrogen peroxide and hypochlorous acid, including that generated by electrochemical scaffolds. Antimicrobial Agents and Chemotherapy, Feb, 65 (5) e01966-20; https://doi.org/ 10.1128/AAC.01966-20
  • Flurin L., Raval, Y. S., Mohamed, A., Greenwood-Quaintance, K. E., Cano, E. J., Beyenal, H., Patel, R. 2021. An integrated HOCl-producing e-scaffold is active against monomicrobial and polymicrobial biofilms. Antimicrobial Agents and Chemotherapy, Feb, 65 (3) e02007-20; https://doi.org/10.1128/AAC.02007-20
  • Beyenal, H., Chang, I. S., Mohan, S. V., Pant, D. 2021. Microbial fuel cells: Current trends and emerging applications. Bioresource Technology, 324, 3, https://doi.org/10.1016/j.biortech.2021.124687.
  • Oksuz, S.T., Beyenal, H. 2021 Enhanced bioelectrochemical nitrogen removal in flow through electrodes. Sustainable Energy Technologies and Assessments, 47, 101507, https://doi.org/10.1016/j.seta.2021.101507
  • Guo, F., Babauta, J.T. and Beyenal, H. 2021. The effect of additional salinity on performance of a phosphate buffer saline buffered three-electrode bioelectrochemical system inoculated with wastewater. Bioresource Technology, 320, 124291, https://doi.org/10.1016/j.biortech.2020.124291
  • Molki, B., Call, R.D., Ha, P.T., Omsland, A. Gang, D.R., Lindemann, S.R., Killiny, A. and Beyenal, H. 2020. Growth of “Candidatus Liberibacter asiaticus” in a host-free microbial culture is associated with microbial community composition. Enzyme and Microbial Technology, 142, 109691, https://doi.org/10.1016/j.enzmictec.2020.109691
  • Karahan, H. E., Ji, M., Pinilla, J.L., Han, X., Mohamed, A., Wang, L., Wang, Y., Zhai, S., Montoya, A., Beyenal, H., and Chen, Y. 2020. Biomass-derived nanocarbons for biological applications: challenges and prospects.” Journal of Materials Chemistry Bhttps://doi.org/10.1039/D0TB01027H
  • Kumar, P., Lee, J-H., Beyenal, H., Lee, J. 2020. Review: Fatty acids as antibiofilm and antivirulence agents. Trends in microbiologyhttps://doi.org/10.1016/j.tim.2020.03.014
  • Ben-Sahil, A., Mohamed, A., Beyenal, H. 2020. Three-dimensional biofilm image reconstruction for assessing structural parameters. Biotechnology and Bioengineering, 117, 2460-2468, https://doi.org/10.1002/bit.27363
  • Medina, S. A., Tibbits, G., Wall, N.A., Ivory, C.F., Clark, S.B. and Beyenal, H. 2020. Electrochemical pre-concentration of neptunium with a microelectrochemical quartz crystal microbalance. The Journal of Radioanalytical and Nuclear Chemistry, 324, 1021–1030, https://doi.org/10.1007/s10967-020-07138-0
  • Zmuda, H.M., Mohamed, A., Raval, Y.S., Patel, R., Call, D.R., Schuetz, A.N. and Beyenal, H. 2020. Hypochlorous acid-generating electrochemical scaffold eliminates Candida albicans biofilms. Journal of Applied Microbiologyhttps://doi.org/10.1111/jam.14656
  • Medina, S.A., Wall, N.A., Ivory, C.F., Clark, S.B. and Beyenal, H. 2020. Pre-concentration mechanism of trivalent lanthanum on eQCM electrodes in the presence of α-hydroxy isobutyric acid. Journal of Electroanalytical Chemistry, 857, https://doi.org/10.1016/j.jelechem.2019.113731
  • Liu, P., Liang, P., Beyenal, H., Huang, X. 2020. Overestimation of biofilm conductance determined by using the split electrode as the microbial respiration. Journal of Power Sources, 453,https://doi.org/10.1016/j.jpowsour.2020.227906
  • Liu, P., Mohamed, A., Liang, P. and Beyenal, H. 2020. Effect of electrode spacing on electron transfer and conductivity of Geobacter sulfurreducens biofilms, Bioelectrochemistry, 131, https://doi.org/10.1016/j.bioelechem.2019.107395
  • Tutar, S., Mohamed, A., Ha, P. and Beyenal, H. 2020. Electron donor availability controls scale up of anodic biofilms, Bioelectrochemistry, 132, https://doi.org/10.1016/j.bioelechem.2019.107403
  • Attaran, E., Berim, A., Killiny, N., Beyenal, H., Gang, D. R. and Omsland, A. 2020 Controlled replication of ‘Candidatus Liberibacter asiaticus‘ DNA in citrus leaf discs. Microbial Biotechnology12.14.19. https://doi.org/10.1111/1751-7915.13531
  • Molki, B., Ha, P.T., Mohamed, A., Gang, D.R., Omsland, A. and Beyenal, H. 2019. Physiochemical changes mediated by “Candidatus Liberibacter asiaticus” in Asian citrus psyllids. Scientific Reports, 9:16375, https://doi.org/10.1038/s41598-019-52692-7
  • Ha, P.T., He, R., Killiny, N., Brown, J. K., Omsland, A., Gang, D.R. and Beyenal, H. 2019. Host-free biofilm culture of “Candidatus Liberibacter asiaticus,” the causative agent of Huanglongbing, Biofilmhttps://doi.org/10.1016/j.bioflm.2019.100005
  • Deliorman, M., Duatepe, F.P.G., Davenport, E.K., Fransson, B., Call, D.R. and Abu-Lail, N.I. 2019. Responses of Acinetobacter baumannii bound and loose extracellular polymeric substances to hyperosmotic agents combined with or without tobramycin: an atomic force microscopy study. Langmuirhttps://doi.org/10.1021/acs.langmuir.9b01227
  • Molki, M., Ha, P.T., Cohen, A.L., Crowder, D.W., Gang, D.R., Omsland, A., Brown, J.K. and Beyenal, H. 2019. The infection of its insect vector by bacterial plant pathogen “Candidatus Liberibacter solanacearum” is associated with altered vector physiology, Enzyme and Microbial Technology, 129, https://doi.org/10.1016/j.enzmictec.2019.109358
  • Kiamco, M.M., Zmuda, H., Mohamed, A., Call, D.R., Raval, Y.S., Patel, R. and Beyenal, H. 2019. Hypochlorous acid-generating electrochemical scaffold for treatment of wound biofilms, Scientific Reports, 9:2683, https://doi.org/10.1038/s41598-019-38968-y
  • Raval, Y.S., Mohammed, A., Zmuda, H., Patel, R. and Beyenal, H. 2019. Hydrogen-peroxide-generating electrochemical scaffold eradicates methicillin-resistant Staphylococcus aureus biofilms. Global Challenges, 1800101, https://doi.org/10.1002/gch2.201800101
  • Rincon, S.M., Urrego, N.F., Avila, K.J., Romero, H.M. and Beyenal, H. 2019. Photosynthetic activity assessment in mixotrophically cultured Chlorella vulgaris biofilms at various developmental stages. Algal Research, 38, https://doi.org/10.1016/j.algal.2019.101408
  • Mohamed, A., Ha, P.T., Peyton, B.M., Mueller, E., Meagher, M. and Beyenal, H. 2019. In situ enrichment of microbial communities on polarized electrodes deployed in alkaline hot springs. Journal of Power Sources, 547-556, https://doi.org/10.1016/j.jpowsour.2019.01.027
  • Molina, D.E., Medina, A.S., Beyenal, H. and Ivory, C.F. 2019. Design and finite elements model of a microfluidic platform with removable electrodes for electrochemical analysis. Journal of Electrochemical Society, B125-B132, https://doi.org/10.1149/2.0891902jes
  • Guo, F., Babauta, T.J. and Beyenal, H. 2018. Impact of intermittent polarization on electrode-respiring Geobacter sulfurreducens biofilms. Journal of Power Sources, 96-101, https://doi.org/10.1016/j.jpowsour.2018.10.053
  • Medina, S.A., Ivory, C.F., Wall, N.A., Clark, S.B. and Beyenal, H. 2018. Electrochemical preconcentration mechanism of trivalent lanthanum. Journal of Electrochemical Society, 165, p. D654-D661,https://doi.org/10.1149/2.1031813jes
  • Kiamco, M.M., Mohamed, A., Reardon, P.N., Marean-Reardon, C.L., Aframehr, W.M., Call, D.R, Beyenal, H. and Ryan, R.S. 2018. Structural and metabolic responses of Staphylococcus aureus biofilms to hyperosmotic and antibiotic stress. Biotechnology and Bioengineering, 115(6): 1594-1603, http://dx.doi.org/10.1002/bit.26572
  • Rathinam, N.K., Tripathi, A.K., Smirnova, A., Beyenal, H. and Sani, R.K. 2018. Engineering rheology of electrolytes using agar for improving the performance of bioelectrochemical systems. Bioresource Technology, 263, 242-249, http://dx.doi.org/10.1016/j.biortech.2018.04.089
  • Ha, P.H., Lindemann, S.R., Shi, L., Dohnalkova, A.C., Fredrickson, J.K., Madigan, M.T. and Beyenal, H. 2017. Syntrophic anaerobic photosynthesis via direct interspecies electron transfer. Nature Communications, 8:13924, http://dx.doi.org/10.1038/ncomms13924
  • Babauta, J. and Beyenal, H. 2017, Use of a small overpotential approximation to analyze Geobacter sulfurreducens biofilm impedance. Journal of Power Sources, 356, 549-555, http://doi.org/10.1016/j.jpowsour.2017.03.021
  • Hsu, L., Mohamed, A., Ha, T. P., Bloom, J., Ewing, T., Arias-Thode, M., Chadwick, B. and Beyenal, H. 2017, The influence of energy harvesting strategies on performance and microbial community for sediment microbial fuel cells, Journal of the Electrochemical Society, 164(3), H33109-H3114, http://doi.org/10.1149/2.0171703jes
  • Falghoush, A., Beyenal, H., Besser, T.E., Omsland, A., Call, D.R. 2017. Osmotic compounds enhance antibiotic efficacy against Acinetobacter baumannii biofilm communities. Applied and Environmental Microbiology, 83, e01297-17, https://doi.org/10.1128/AEM.01297-17
  • Rincon, S.M., Romero, H.M., Aframehr, W.M. and Beyenal, H. 2017. Biomass production in Chlorella vulgaris biofilm cultivated under mixotrophic growth conditions. Algal Research 26, 153-160, https://doi.org/10.1016/j.algal.2017.07.014
  • Bernstein, H.C., Brislawn, C., Renslow, R.S., Dana, K., Morton, B., Lindemann, S.R., Song, H.S., Atci, E., Beyenal, H., Fredrickson, J.K., Jansson, J.K. and Moran, J.J. 2017. Trade-offs between microbiome diversity and productivity in a stratified microbial mat. ISME Journal, 11, 405-414, http://dx.doi.org/10.1038/ismej.2016.133
  • Renslow, R.S., Ahmed, B.,Nuñez, J.R., Cao, B., Majors, P.D., Fredrickson, J.K. and Beyenal, H. 2017. Modeling substrate utilization, metabolite production, and uranium immobilization in Shewanella oneidensis biofilms. Frontiers in Environmental Science, Microbiotechnology, Ecotoxicology and Bioremediation, 5:30, https://doi.org/10.3389/fenvs.2017.00030
  • Gribat, L.C., Babauta, J. T., Beyenal, H. and Wall, N.A. 2017. New rotating disk hematite film electrode for riboflavin detection, Journal of Electroanalytical Chemistry, 798, 42-50, https://doi.org/10.1016/j.jelechem.2017.05.008
  • Mohamed, A., Ewing, T., Lindemann, S.R., Fredrickson, J.K. and Beyenal, H. 2017. Autonomous device for evaluating the field performance of microbial fuel cells in remote areas, Journal of Electrochemical Society, 164, H3030-3036, http://dx.doi.org/10.1149/2.0041703jes
  • Kiamco, M.M., Atci, E., Mohamed, A., Call, D.R. and Beyenal, H. 2017. Hyperosmotic agents and antibiotics affect dissolved oxygen and pH concentration gradients in Staphylococcus aureus biofilms. Applied Environmental Microbiology, 86, e02783-16, http://dx.doi.org/10.1128/AEM.02783-16
  • Atci, E., Babauta, J.T., Ha, P. and Beyenal, H. 2017. Fumarate microbiosensor for use in biofilms. Journal of Electrochemical Society, 164, H3058-H3064, http://dx.doi.org/10.1149/2.0101703jes
  • Mobberley, J.M., Lindemann, S.R., Bernstein, H.C., Moran, J.J., Renslow, R.S., Babauta, J., Hu, D.H., Beyenal, H. and Nelson, W.C. 2017. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat. Fems Microbiology Ecology, 93:13, http://dx.doi.org/10.1093/femsec/fix028
  • Ewing, T., Ha, P.T. and Beyenal, H. 2017. Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources, Applied Energy, 192, 490-497. http://dx.doi.org/10.1016/j.apenergy.2016.08.177
  • Souzandeh, H., Banafsheh, M., Min, Z., Beyenal, H., Scudiero, L., Wang, Y. and Wei-Hong, Z. 2017. Cross-linked protein nanofilter with antibacterial properties for multifunctional air filtration, ACS Applied Materials and Interfaces, 9, 22846-22855, http://dx.doi.org/10.1021/acsami.7b05796
  • Shi, L., Dong, H., Reguera, G., Beyenal, H., Lu, A., Liu, J., Yu, H. and Fredrickson, J.K. 2016. Electrical interplay between microorganisms and minerals, Nature Microbiology Reviews, 14, 651–662 http://dx.doi.org/10.1038/nrmicro.2016.93
  • Sultana, S.T., Call, D.R. and Beyenal, H. 2016. Eradication of Pseudomonas aeruginosa biofilms and persister cells using an electrochemical scaffold and enhanced antibiotic susceptibility. NPJ Biofilms and Microbiomes, 2, article number 2, http://dx.doi.org/10.1038/s41522-016-0003-0
  • Sultana, S.T., Call, D.R. and Beyenal, H. Maltodextrin enhances biofilm elimination by electrochemical scaffold, Scientific Reports, 6, article number: 36003 http://dx.doi.org/doi:10.1038/srep36003
  • Tanzil, A.H., Sultana, S.T., Saunders, S.R., Dohnalkova, A., Shi, L., Davenport, E., Ha, P. and Beyenal, H. 2016. Production of gold nanoparticles by electrode-respiring Geobacter sulfurreducens biofilms. Enzyme and Microbial Technology, 95, 69-75, http://dx.doi.org/10.1016/j.enzmictec.2016.07.012
  • Tanzil, A.H., Sultana, S.T., Saunders, S.R., Shi, L., Marsili, E. and Beyenal, H. 2016. Biological synthesis of nanoparticles in biofilms, Enzyme and Microbial Technology, 95, 4, http://dx.doi.org/10.1016/j.enzmictec.2016.07.015
  • Babauta, J.T., Medina, A. and Beyenal, H. 2016. EQCM and surface pH studies on lanthanum accumulation on electrodes in aqueous solution. Journal of Electrochemical Society, 163, H866-H870, http://dx.doi.org/10.1149/2.1301609jes
  • Atci, E., Babauta, J.T. and Beyenal, H. 2016. A hydrogen peroxide microelectrode to use in bioelectrochemical systems, Sensors and Actuators B. 226, 429-435, http://dx.doi.org/10.1016/j.snb.2015.12.004
  • James, G.A., Zhao, A.G., Usui, M., Underwood, R.A., Nguyen, H., Beyenal, H., Pulcini, E.D., Hunt, A., Bernstein, H.B., Fleckman, P., Olerud, J., Williamson, K.S., Franklin, M.J. and Stewart, P.S. 2016. Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds. Wound Repair and Regeneration, 24, 373-383, http://doi.wiley.com/10.1111/wrr.12401
  • Atci, E., Babauta, J.T., Sultana, S.T. and Beyenal, H. 2016. Microbiosensor for the detection of acetate in electrode-respiring biofilms. Biosensors and Bioelectronics, 81, 517-23, http://dx.doi.org/10.1016/j.bios.2016.03.027
  • Sultana, S.T., Atci, E., Babauta, J.T., Falghoush, A.M., Snekvik, K.R., Call, D.R. and Beyenal, H. 2015. Electrochemical scaffold generates localized, low concentration of hydrogen peroxide that inhibits bacterial pathogens and biofilms. Scientific Reports, 5, Article number: 14908, http://dx.doi.org/10.1038/srep14908.
  • Sultana, S.T., Babauta, J.T. and Beyenal, H. 2015. Electrochemical biofilm control: A review. Biofouling, 31, 745-758, http://dx.doi.org/10.1080/08927014.2015.1105222
  • Ha, P.T., Renslow, R.S., Atci, E., Reardon, P.N., Lindemann, S.R., Fredrickson, J.K., Call, D.R. and Beyenal, H. 2015. Regulation of electron transfer processes affects phototrophic mat structure and activity. Front. Microbiol., September 3, 2015, http://dx.doi.org/10.3389/fmicb.2015.00909
  • Lone, A., Atci, E., Renslow, R., Beyenal, H., Noh, S., Fransson, B., Abu-Lail, N., Park, J., Gang, D. and Call, D.R. 2015. Colonization of epidermal tissue by Staphylococcus aureus biofilm produces localized hypoxia and stimulates secretion of antioxidant and caspase-14 proteins. Infection and Immunity, 83(8):3026-34, http://dx.doi.org/10.1128/IAI.00175-15.
  • Harrington, T.D., Mohamed, A., Tran, V.N., Biria, S., Gargouri, M., Park, J-J., Gang, D.R. and Beyenal, H. 2015. Neutral red-mediated microbial electrosynthesis by Escherichia coliKlebsiella pneumoniae, and Zymomonas mobilisBioresource Technology, 57-65, http://dx.doi.org/10.1016/j.biortech.2015.06.005
  • Kiamco, M.M., Atci, E., Khan, Q.F., Mohamed, A., Renslow, R.S., Abu-Lail, N., Fransson, B.A., Call, D.R. and Beyenal, H. 2015. Vancomycin and maltodextrin affect structure and activity of Staphylococcus aureus biofilms. Biotechnology and Bioengineering, 112, 12, 2562-2570, http://dx.doi.org/10.1002/bit.25681
  • Harrington, T.D., Tran, V.N., Mohamed, A., Renslow, R., Biria, S., Orfe, L., Call, D.R. and Beyenal, H. 2015.The mechanism of neutral red-mediated microbial electrosynthesis in Escherichia coli: menaquinone reduction. Bioresource Technology, 192, 689-695, http://dx.doi.org/10.1016/j.biortech.2015.06.037
  • Lone, A., Atci, E., Renslow, R., Beyenal, H., Noh, S., Fransson, B., Abu-Lail, N., Park, J., Gang, D. and Call, D. 2015. Staphylococcus aureus induces hypoxia and cellular damage in porcine dermal explants. Infection and Immunity, 83, 2531-2541http://dx.doi.org/10.1128/IAI.03075-14
  • Tang, N., Hong, W., Ewing, B., Beyenal., H., Kim, J., Heo, D. 2015. A self-sustainable power management system for reliable power scaling up of sediment microbial fuel cells. IEEE Transactions on Power Electronics, September, 4626-4632, http://dx.doi.org/10.1109/TPEL.2015.2397931
  • Harrington, T.D., Babauta, T.J., Davenport, E.K. and Renslow, R.S. 2015. Excess surface area in bioelectrochemical systems causes ion transport limitations. Biotechnology and Bioengineering, 5, 858-866, http://dx.doi.org/10.1002/bit.25500
  • Liu, Y., Zheming, W., Juan, L., Levar, C., Edwards, M., Babauta, J., Kennedy, D., Shi, Z., Beyenal, H., Bond, D., Clarke, T., Butt, J., Richardson, D., Rosso, K., Zachara, J., Fredrickson, J. and Shi, L. 2014. A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA. Environmental Microbiology Reports, 6, 776-785, http://dx.doi.org/10.1111/1758-2229.12204
  • Babauta, J.T. and Beyenal, H. 2014. Local current variation by depth in Geobacter sulfurreducens biofilms. Journal of Electrochemical Society, 161, H3070-H3075, http://dx.doi.org/10.1149/2.0131413jes
  • Ewing, T., Ha, T.P., Babauta, J.T., Tang, N., Heo, D. and Beyenal, H. 2014. Scale-up of sediment microbial fuel cells. Journal of Power Sources, 272, 311-319, http://dx.doi.org/10.1016/j.jpowsour.2014.08.070
  • Resat, H., Renslow, S.R. and Beyenal, H. 2014. Reconstruction of biofilm images: combining local and global structural parameters. Biofouling, 30, 1141-1154, http://dx.doi.org/10.1080/08927014.2014.969721
  • Babauta, J.T., Hsu, L., Kagan, J., Chadwick, B. and Beyenal, H. 2014. Multiple cathodic reaction mechanisms in seawater cathodic biofilms operating in sediment microbial fuel cells. ChemSusChem., 10, 2898-2906, http://dx.doi.org/10.1002/cssc.201402377
  • Babauta, J.T., Beasley, C. and Beyenal, H. 2014. Investigation of electron transfer by Geobacter sulfurreducens biofilms using an electrochemical quartz crystal microbalance, ChemElectroChem, 1, 2007-2016, http://dx.doi.org/10.1002/celc.201402127
  • Ewing, T., Babauta, J.T., Atci, E., Tang, N., Orellana, J., Heo, D. and Beyenal, H. 2014. Self-powered wastewater treatment for the enhanced operation of a facultative lagoon. Journal of Power Sources, 269, 284-292, http://dx.doi.org/10.1016/j.jpowsour.2014.06.114
  • Davenport, E.K., Call, D.R. and Beyenal, H. 2014. Differential protection from tobramycin by extracellular polymeric substances from Acinetobacter baumannii and Staphylococcus aureus biofilms. Antimicrobial Agents and Chemotherapy, 58, 4755-4761, http://dx.doi.org/10.1128/AAC.03071-14.
  • Babauta, J.T., Atci, E., Ha, P., Lindemann, S., Ewing, T., Call, D.R., Fredrickson, J.K. and Beyenal, H. 2014. Localized electron transfer rates and microelectrode-based enrichment of microbial communities within a phototrophic microbial mat. Vol. 5, Article 11, Frontiers in Microbiology, a special issue of Microbial Physiology and Metabolism, http://dx.doi.org/10.3389/fmicb.2014.00011
  • Babauta, J. and Beyenal, H. 2014, Mass transfer studies of Geobacter sulfurreducens biofilms on rotating disk electrodes. Biotechnology and Bioengineering, 111285-294, http://dx.doi.org/10.1002/bit.25105
  • Dewan, A., Ay, S., Karim, N. and Beyenal, H. 2014. Alternative power sources for remote sensors: a review. Journal of Power Sources, 245, 129-143, http://dx.doi.org/10.1016/j.jpowsour.2013.06.081
  • Renslow, R.S., Babauta, J.T., Majors, P.D., Mehta, H.S., Ewing, R.J., Ewing, T.W., Mueller, K.T. and Beyenal, H. 2014. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques. Water Science and Technology, 69, 966-973, http://dx.doi.org/10.2166/wst.2013.802
  • Renslow R.S., Babauta J.T., Kuprat, A., Schenk, J., Ivory, C.F., Fredrickson, J.K. and Beyenal, H. 2013. Modeling biofilm with dual extracellular electron transfer mechanism. Physical Chemistry Chemical Physics, 15, 19362-19283, http://dx.doi.org/10.1039/c3cp53759e
  • Lindemann, S.R., Moran, J. J., Stegen, J.C., Mackley, R.D., Renslow, R.S., Hutchison, J.R., Cole, J.K., Dohnalkova, A.C., Tremblay, J., Singh, K., Malfatti, S.A., Chen, F., Tringe, S.G., Beyenal, H. and Fredrickson, J.K. 2013. The epsomitic phototrophic microbial mat of Hot Lake, Washington: community structural responses to seasonal cycling. Frontiers in Microbiology, a special issue of Microbial Physiology and Metabolism, 4, 323, http://dx.doi.org/10.3389/fmicb.2013.00323
  • Babauta, J., Nguyen, H.D., Istanbullu, O. and Beyenal, H. 2013. Microscale gradients of oxygen, hydrogen peroxide, and pH in fresh water cathodic biofilms. ChemSusChem, 6, 1252-1261, http://dx.doi.org/10.1002/cssc.201300019
  • Renslow, R.S., Babauta, J.T., Dohnalkova, A., Boyanov, M.I., Kemner, K.M., Majors, P.D., Fredrickson, J.Kand Beyenal, H. 2013. Metabolic spatial variability in electrode-respiring Geobacter sulfurreducens biofilms. Energy and Environmental Science, 6, 1827-1836,  http://dx.doi.org/10.1039%2FC3EE40203G
  • Renslow, R.S., Babauta, J.T., Majors, P.D. and Beyenal, H. 2013. Diffusion in biofilms respiring on electrodes. Energy and Environmental Science, 6, 595 – 607, http://dx.doi.org/10.1039%2FC2EE23394K
  • Donovan, C., Dewan, A., Heo, D. and Beyenal, H. 2013. Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring. Journal of Power Sources, 233, 79-85, http://dx.doi.org/10.1016/j.jpowsour.2012.12.112
  • Beyenal, H. and Babauta, J. 2012. Microscale gradients and their role in electron transfer mechanisms in biofilms, Biochemical Society Transactions, 40, 1315-1318, http://dx.doi.org/10.1042/BST20120105
  • Ahmed, B., Cao, B., McLean, S.J., Ica, T., Dohnalkova, A., Fredrickson, J. and Beyenal, H. 2012, Fe(III) reduction and U(VI) immobilization by Paenibacillus sp. 300A isolated from Hanford 300A subsurface sediments. Applied Environmental Microbiology, 78, 8001-8009, http://dx.doi.org/10.1128/AEM.01844-12
  • Cao, B., Majors, P., Ahmed, B., Renslow, R., Dohnalkova, A., Sylvia, C.P., Shi, L., Fredrickson, J.K., Isern, N.G., Majors, P.D. and Beyenal, H. 2012. Spatiotemporal metabolic responses of Shewanella oneidensis MR-1 biofilms to U(VI) and Cr(VI) exposure, Environmental Microbiology, 14, 2901-2910.
  • Babauta, T.J., Renslow, R., Lewandowski, Z. and Beyenal, H. 2012. Electrochemically active biofilms: facts and fiction. A review. Biofouling, 28, 789-812, http://dx.doi.org/10.1080/08927014.2012.710324
  • Istanbullu, O., Babauta, J., Nguyen, H.D., Beyenal, H. 2012. Electrochemical biofilm control: mechanism of action. Biofouling, 28, 769-778, http://dx.doi.org/10.1080/08927014.2012.707651
  • Ahmed, B., Cao, B., Mishra, B., Boyanov, M.I., Kemner, K.M., Fredrickson, J.K. and Beyenal, H. 2012. Immobilization of U(VI) from oxic groundwater by Hanford 300 Area sediments and effects of Columbia River water, Water Research, 46, 3989-3998, http://dx.doi.org/10.1016/j.watres.2012.05.027
  • Babauta, T. J., Nguyen, H.D., Harrington, T.D., Renslow, R. and Beyenal, H. 2012. pH, redox potential and local biofilm potential microenvironments within Geobacter sulfurreducens biofilms and their roles in electron transfer, Biotechnology and Bioengineering, 109, 2651-2662, http://dx.doi.org/10.1002/bit.24538
  • DeVasConCello, P., Bose, S., Beyenal, H., Zirkle, L.G. and Bandyopadhyay, A. 2012. Antimicrobial particulate silver coatings on stainless steel implants for fracture management. Materials Science and Engineering C, 32, 1112-1120, http://dx.doi.org/10.1016/j.msec.2012.02.020
  • Roy, M., Fielding, G., Beyenal, H., Bandyopadhyay, A. and Bose, S. 2012. Mechanical, in vitro antimicrobial and biological properties of plasma-sprayed silver-doped hydroxyapatite coating, ACS Applied Materials & Interfaces, 4, 1341-1349, https://dx.doi.org/10.1021/am201610q
  • Ica, T., Caner, V., Istanbullu, O., Nguyen, H.D., Ahmed, B., Call, D.R. and Beyenal, H. 2012. Characterization of mono- and mixed-culture Campylobacter jejuni biofilms, Applied Environmental Microbiology, 78, 1033-1038, http://dx.doi.org/10.1128/AEM.07364-11
  • Nguyan, H.D., Renslow, R., Babauta, J., Ahmed, B. and Beyenal, H. 2012. A voltammetric flavin microelectrode for use in biofilms. Sensors and Actuators B: Chemical, 161, 929-937, http://dx.doi.org/10.1016/j.snb.2011.11.066
  • Nguyen, H.D., Cao, B., Mishra, B., Boyanov, M.I., Kemner, K.M., Fredrickson, J.K. and Beyenal, H. 2012. Microscale geochemical gradients in Hanford 300 area sediment biofilms and influence of uranium, Water Research, 46, 227-234, http://dx.doi.org/10.1016/j.watres.2011.10.054
  • Renslow, R., Donovan, C., Shim, M., Babauta, J., Nannapaneni, S., Schenk, J. and Beyenal, H. 2011. Oxygen reduction kinetics on graphite cathodes in sediment microbial fuel cells, Physical Chemistry Chemical Physics, 13, 21573-21584, http://dx.doi.org/10.1039/c1cp23200b
  • Babauta, T. J., Nguyen, H.D. and Beyenal, H. 2011. Redox and pH microenvironments within Shewanella oneidensis MR-1 biofilms reveal electron transfer mechanisms, Environmental Science and Technology, 45, 6654-6660, http://dx.doi.org/10.1021/es200865u
  • Krol, J.E., Nguyen, H.D., Rogers, L.M., Beyenal, H., Krone, S.M. and Top, E.M. 2011. Increased transfer of a multi-drug resistance plasmid in E. coli biofilms at the air-liquid interface, Applied Environmental Microbiology, 77, 5079-5088, http://dx.doi.org/10.1128%2FAEM.00090-11
  • Cao, B., Ahmed, B., Kennedy, D.W., Shi, L., Marshall, M.J., Fredrickson, J.K., Isern, N.G., Majors, P.D. and Beyenal, H. 2011. Contribution of extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms to U(VI) immobilization, Environmental Science and Technology, 45, 5483–5490, http://dx.doi.org/10.1021/es200095j
  • Renslow, R., Lewandowski, Z. and Beyenal, H. 2011. Biofilm image reconstruction for assessing structural parameters, Biotechnology and Bioengineering, 108, 1383-1394, http://dx.doi.org/10.1002/bit.23060
  • Cao, B., Shi, L., Brown, R., Xiong, Y., Fredrickson, J.K., Romine, M.F., Marshall, M.J., Lipton, M.S. and Beyenal, H. 2011. Extracellular polymeric substances from Shewanella sp. HRCR-1 biofilms: characterization by infrared spectroscopy and proteomics. Environmental Microbiology, 13, 1018-1031,http://dx.doi.org/10.1111/j.1462-2920.2010.02407.x
  • Donavan, C., Dewan, A., Peng, H., Heo, D. and Beyenal, H. 2011. Power management system for a 2.5 W remote sensor powered by a sediment microbial fuel cell. Journal of Power Sources, 196, 1171-1177, http://dx.doi.org/10.1016/j.jpowsour.2010.08.099
  • Renslow, R., Majors, P.D., McLean, J.S., Fredrickson, J.K., Bulbul, A. and Beyenal, H. 2010. In situ effective diffusion coefficient profiles in live biofilms using pulsed-field gradient nuclear magnetic resonance. Biotechnology and Bioengineering, 106, 928-938,http://dx.doi.org/10.1002/bit.22755
  • McLean, S.J., Wanger, G., Gorby, Y.A., Wainstein, M., McQuaid, J., Ishii, S., Bretschger, O., Beyenal, H. and Nealson, K. 2010. Quantification of electron transfer rates to a solid phase electron acceptor through the stages of biofilm formation from single cells to multicellular communities. Environmental Science and Technology, 44, 2721-2727, http://dx.doi.org/10.1021/es903043p
  • Dewan, A., Bernard Van Wie, Lewandowski, Z. and Beyenal, H., 2010. Microbial fuel cells as an education tool, Chemical Engineering Education, 44, No.2, 157-165.
  • Ke, J., Sun, J.Z., Nguyen, H.D., Singh, D., Lee, K.C., Beyenal, H. and Chen, S. 2010. In-situ oxygen profiling and lignin modification in guts of wood-feeding termites, Insect Science, 17, 277-290. http://dx.doi.org/10.1111/j.1744-7917.2010.01336.x
  • Dewan, A., Donovan, C., Heo, D. and Beyenal, H. 2010. Evaluating the performance of microbial fuel cells powering electronic devices, Journal of Power Sources, 195, 90-96, http://dx.doi.org/10.1016/j.jpowsour.2009.07.001
  • Yeon, K., Cheong, W., Oh, H., Lee, W., Hwang, B., Lee, C., Beyenal, H. and Lewandowski, Z. 2009. Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment, Environmental Science and Technology, 43, 380-385, http://dx.doi.org/10.1021/es8019275
  • Dewan, A., Beyenal, H. and Lewandowski, Z. 2009. Intermittent energy harvesting improves the performance of microbial fuel cells. Environmental Science and Technology, 43, 4600-4605,http://dx.doi.org/10.1021/es8037092
  • Donovan, C., Dewan, A., Heo, D. and Beyenal, H. 2008. Batteryless, wireless sensor powered by a sediment microbial fuel cell, Environmental Science and Technology, 42, 8591-8596, http://dx.doi.org/10.1021/es801763g
  • Dewan, A., Beyenal, H. and Lewandowski, Z. 2008. Scaling up microbial fuel cells. Environmental Science and Technology, 42, 7643-7648, http://dx.doi.org/10.1021/es800775d
  • Veluchamy, R.A., Beyenal, H. and Lewandowski, Z. 2008. Characterizing temporal development of biofilm porosity using artificial neural networks. Water Science and Technology, 57, 1867-1872, http://dx.doi.org/10.2166/wst.2008.608
  • Marsili, E., Beyenal, H., Di Palma, L., Merli, C., Dohnalkova, A., Amonette, J.E. and Lewandowski, Z. 2007. Uranium immobilization by sulfate-reducing biofilms. Environmental Science and Technology, 41, 8349-8354, http://dx.doi.org/10.1021/es0348703
  • Lewandowski, Z., Beyenal, H., Myers, J. and Stookey, D. 2007. The effect of detachment on biofilm structure and activity: the oscillating pattern of biofilm accumulation. Water Science and Technology, 55, 429-436, http://dx.doi.org/10.2166/wst.2007.287
  • Rani, S.A., Pitts, B., Beyenal, H., Veluchamy, R.A., Lewandowski, Z., Davison, W.M., Buckingham-Meyer, K. and Stewart, P.S. 2007. Spatial patterns of DNA replication, protein synthesis and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriology, 189 (11), 4223-4233, http://dx.doi.org/10.1128/JB.00107-07
  • Menicucci, J., Beyenal, H., Marsili, E., Veluchamy, R.A., Demir, G. and Lewandowski, Z. 2006. A procedure for determining maximum sustainable power generated by microbial fuel cells. Environmental Science and Technology, 40, 1062-1068, http://dx.doi.org/10.1021/es051180l
  • Shantaram, A., Beyenal, H., Veluchamy, R.A. and Lewandowski, Z. 2005. Wireless sensors powered by microbial fuel cells. Environmental Science and Technology, 39, 5037-5042, http://dx.doi.org/10.1021/es0480668
  • Rhoads, A., Beyenal, H. and Lewandowski, Z. 2005. Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant. Environmental Science and Technology, 39, 4666-4671, http://dx.doi.org/10.1021/es048386r
  • Beyenal, H. and Lewandowski, Z. 2005. Modeling mass transport and microbial activity in stratified biofilms. Chemical Engineering Science 60, 4337-4348, http://dx.doi.org/10.1016/j.ces.2005.02.063
  • Marsili, E., Beyenal, H., Di Palma, L., Merli, C., Dohnalkova, A., Amonette, J.E. and Lewandowski, Z. 2005. Uranium removal by sulfate reducing biofilms in the presence of carbonates. Water Science and Technology 52, 49-55.
  • Lewandowski, Z. and Beyenal, H. 2005. Biofilms: their structure, activity, and effect on membrane filtration. Water Science and Technology, 51, 181-192.
  • Beyenal, H., Donovan, C., Lewandowski, Z. and Harkin, G. 2004. Three-dimensional biofilm image structure quantification. Journal of Microbiological Methods, 59, 395-413. http://dx.doi.org/10.1016/j.mimet.2004.08.003
  • Lewandowski, Z., Beyenal, H. and Stookey, D. 2004. Reproducibility of biofilm processes and the meaning of steady state in biofilm reactors. Water Science and Technology, 49, 359-364.
  • Beyenal, H., Davis, C.C. and Lewandowski, Z. 2004. An optical microsensor to measure fluorescent light intensity in biofilms. Journal of Microbiological Methods, 58, 367-374, http://dx.doi.org/10.1016/j.mimet.2004.05.003
  • Beyenal, H. and Lewandowski, Z. 2004. Dynamics of lead immobilization in sulfate reducing biofilms. Water Research, 38, 2726-2736, http://dx.doi.org/10.1016/j.watres.2004.03.023
  • Beyenal, H., Sani, R.K., Peyton, B.M., Dohnalkova, A., Amonette, J.E and Lewandowski, Z. 2004. Uranium immobilization by sulfate-reducing biofilms. Environmental Science and Technology, 38, 2067-2074, http://dx.doi.org/10.1021/es0348703
  • Beyenal, H., Lewandowski, Z. and Harkin, G. 2004. Quantifying biofilm structure: facts and fiction. Biofouling, 20, 1-23, http://dx.doi.org/10.1080/0892701042000191628
  • Beyenal, H., Davis, C.C. and Lewandowski, Z. 2004. An improved Severinghaus-type carbon dioxide microelectrode for use in biofilms. Sensors and Actuators B, Chemical, 97, 202-210, http://dx.doi.org/10.1016/j.snb.2003.08.015
  • Algirdas, J.J., Franklin, M.J., Berglund, D., Sasaki, M., Lord, C.M., Bleazard, J.B., Duffy, J.E., Beyenal, H. and Lewandowski, Z. 2003. Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. Journal of Immunology, 171, 3911-3912, http://dx.doi.org/10.4049/jimmunol.171.8.4329
  • Yurt, N., Beyenal, H., Sears, J. and Lewandowski, Z. 2003. Quantifying selected growth parameters of Leptothrix discophora SP-6 in biofilms from oxygen concentration profiles. Chemical Engineering Science, 58, 4557-4566, http://dx.doi.org/10.1016/S0009-2509(03)00344-0
  • Lewandowski, Z. and Beyenal, H. 2003. Biofilm monitoring: A perfect solution in search of a problem. Water Science and Technology, 47, 1251-1556.
  • Beyenal, H., Chen, S.N. and Lewandowski, Z. 2003. The double substrate growth kinetics of Pseudomonas aeruginosaEnzyme and Microbial Technology, 32, 92-98, http://dx.doi.org/10.1016/S0141-0229(02)00246-6
  • Beyenal, H. and Lewandowski, Z. 2002. Internal and external mass transfer in biofilms grown at various flow velocities. Biotechnology Progress, 18, 55-61, http://dx.doi.org/10.1021/bp010129s
  • Christensen, B.J., Ertesvag, H., Beyenal, H. and Lewandowski, Z. 2001. Resistance of biofilms containing alginate-producing bacteria to disintegration by an alginate degrading enzyme (AlgL), Biofouling, 17, 203-210, http://dx.doi.org/10.1080/08927010109378479
  • Beyenal, H. and Lewandowski, Z. 2001. Mass transport dynamics, activity, and structure of sulfate-reducing biofilms. AIChE, 47, 1689-1697, http://dx.doi.org/10.1002/aic.690470721
  • Jackson, G., Beyenal, H., Rees, W.M. and Lewandowski, Z. 2001. Growing reproducible biofilms with respect to structure and viable cell counts. Journal of Microbiological Methods, 47, 1-10, http://dx.doi.org/10.1016/S0167-7012(01)00280-9
  • Yang, X., Beyenal, H., Harkin, G. and Lewandowski, Z. 2001. Evaluation of biofilm image thresholding methods. Water Research, 35, 1149-1158, http://dx.doi.org/10.1016/S0043-1354(00)00361-4
  • Beyenal, H., Lewandowski, Z., Yakymyshyn, C., Lemley, B. and Wehri, J. 2000. Fiber optic microsensors to measure backscattered light intensity in biofilms. Applied Optics, 39, 3408-3412, http://dx.doi.org/10.1364/AO.39.003408
  • Beyenal, H. and Lewandowski, Z. 2000. Combined effects of substrate concentration and flow velocity at which biofilms were grown on effective diffusivity. Water Research, 34, 528-538.
  • Yang, X., Beyenal, H., Harkin, G. and Lewandowski, Z. 2000. Quantifying biofilm structure using image analysis. Journal of Microbiological Methods, 39, 109-119, http://dx.doi.org/10.1016/S0167-7012(99)00097-4
  • Seker, S., Beyenal, H. and Tanyolaç, A. 1999. Modeling milk clotting activity in the continuous production of microbial rennet from Mucor mieheiJournal of Food Science, 64, 525-529, http://dx.doi.org/10.1111/j.1365-2621.1999.tb15076.x
  • Beyenal, H., Seker, S., Salih, B. and Tanyolaç, A. 1999. The effect of D-glucose on milk clotting activity of Mucor miehei in a chemostat with biomass retention. Journal of Chemical Technology and Biotechnology, 74, 527-532, http://dx.doi.org/10.1002/(SICI)1097-4660(199906)74:6<527::AID-JCTB77>3.0.CO;2-J
  • Tanyolaç, A. and Beyenal, H. 1998. Prediction of substrate consumption rate, average biofilm density and active thickness for a thin spherical biofilm at pseudo-steady state. Biochemical Engineering Journal, 2, 207-216, http://dx.doi.org/10.1016/S1369-703X(98)00035-7
  • Seker, S., Beyenal, H., Ayhan, F. and Tanyolaç, A. 1998. Production of microbial rennin from Mucor miehei in a continuously fed fermenter. Enzyme and Microbial Technology, 23, 469-474, http://dx.doi.org/10.1016/S0141-0229(98)00077-5
  • Beyenal, H. and Tanyolaç, A. 1998. The effects of biofilm characteristics on the external mass transfer coefficient in a fluidized bed biofilm reactor. Biochemical Engineering Journal, 1, 53-61, http://dx.doi.org/10.1016/S1369-703X(97)00010-7
  • Beyenal, H., Tanyolaç, A. and Lewandowski, Z. 1998. Measurement of local effective diffusivity in heterogeneous biofilms. Water Science and Technology, 38, 171-178, http://dx.doi.org/10.1016/S0273-1223(98)00691-X
  • Xia, F., Beyenal, H. and Lewandowski, Z. 1998. An electrochemical technique to measure local flow velocity in biofilms. Water Research, 32, 3637-3645, http://dx.doi.org/10.1016/S0043-1354(98)00122‑5
  • Beyenal, H., Seker, S., Salih, B. and Tanyolaç, A. 1997. Diffusion coefficients of phenol and oxygen in a biofilm of Pseudomonas putidaAIChE Journal, 43, 243-250, http://dx.doi.org/10.1002/aic.690430126
  • Tanyolaç, A. and Beyenal, H. 1997. Prediction of average biofilm density and performance of a spherical particle under substrate inhibition. Biotechnology and Bioengineering, 56, 319-329, http://dx.doi.org/10.1002/(SICI)1097-0290(19971105)56:3%3C319::AID-BIT10%3E3.0.CO;2-B
  • Beyenal, H. and Tanyolaç, A. 1997. A combined growth model of Zoogloea ramigera including multi-substrate, pH and mixing rate effects. Enzyme and Microbial Technology, 21, 74-78.
  • Seker, S., Beyenal, H., Salih, B. and Tanyolaç, A. 1997. Multi-substrate growth kinetics of Pseudomonas putida for phenol removal. Applied Microbiology and Biotechnology, 47, 610-614, http://dx.doi.org/10.1007/s002530050982
  • Tanyolaç, A. and Beyenal, H. 1996. Predicting average biofilm density of a fully active spherical bioparticle. Journal of Biotechnology, 52, 39-49, http://dx.doi.org/10.1016/S0168-1656(96)01624-0
  • Beyenal, H. and Tanyolaç, A. 1996. Simultaneous evaluation of effective diffusion coefficients of the substrates in a biofilm with a novel experimental method. Canadian Journal of Chemical Engineering, 74, 526-533, http://dx.doi.org/10.1002/cjce.5450740413
  • Tanyolaç, A. and Beyenal, H. 1996. Effectiveness factor for a hollow fiber biofilm reactor at maximum substrate consumption. The Chemical Engineering and Biochemical Engineering Journal, 62, 149-154, http://dx.doi.org/10.1016/0923-0467(95)03066-2
  • Seker, S., Beyenal, H. and Tanyolaç, A. 1995. The effects of biofilm thickness on biofilm density and substrate consumption rate in a differential fluidized bed biofilm reactor (DFBBR). Journal of Biotechnology, 41, 39-47, http://dx.doi.org/10.1016/0168-1656(95)00050-Z
  • DemircioÄŸlu, H., Beyenal, H., Tanyolaç, A. and Hasirci, N. 1995. Entrapment of urease in glycol-containing polymeric matrices and estimation of effective diffusion coefficient of urea. Polymer, 36, 4091-4096, http://dx.doi.org/10.1016/0032-3861(95)90989-F
  • DemircioÄŸlu, H., Beyenal, H., Tanyolaç, A. and Hasirci, N. 1994. Immobilization of urease and estimation of effective diffusion coefficients of urea in HEMA and VP copolymer matrices. Polymer International, 35, 321-327, http://dx.doi.org/10.1002/pi.1994.210350404
  • Beyenal, H. and Tanyolaç, A. 1994. A mathematical model for hollow fiber biofilm reactors. The Chemical Engineering and Biochemical Engineering Journal, 56, B53-B59, http://dx.doi.org/10.1016/0923-0467(94)87032-2
  • Beyenal, H. and Tanyolaç, A. 1994. The calculation of simultaneous effective diffusion coefficients of the substrates in a fluidized bed biofilm reactor. Water Science and Technology, 29, 463-470.

Peer-reviewed book chapters

  • Istanbullu, O., Babauta, J.T., Renslow, R.S. and Beyenal, H. Monitoring electron transfer rates of electrode-respiring cells. In Microbial Electrochemical Technologies, edited by Tiquia-Arashiro, S., Pant, Deepak, CRC Press. In press.
  • Babauta, J.T. and Beyenal, H. 2015. Introduction to electrochemically active biofilms. In Electrochemically Active Biofilms inMicrobial Fuel Cells and Bioelectrochemical Systems: from laboratory practice to data interpretation. Book edited by Beyenal H. and Babauta, J.T., pp. 1-36. Wiley and Sons, http://dx.doi.org/10.1002/9781119097426.ch1
  • Babauta, J.T. and Beyenal, H. 2015. Biofilm electrochemistry. In Electrochemically Active Biofilms in Microbial Fuel Cells and Bioelectrochemical Systems: from laboratory practice to data interpretation. Book edited by Beyenal H. and Babauta, J.T., pp.121-176. Wiley and Sons, http://dx.doi.org/10.1002/9781119097426.ch5 
  • Renslow, R.S., Babauta, J.T., Kuprat, A., Schenk, J., Ivory, C.F., Fredrickson, J. and Beyenal, H. 2015. Mathametical modeling of extracellular electron transfer in biofilms. In Electrochemically active biofilms in microbial fuel cells and bioelectrochemical systems: from laboratory practice to data interpretation. Book edited by Beyenal, H. and Babauta, J.T, pp. 281-344. Wiley and Sons, http://dx.doi.org/10.1002/9781119097426.ch9
  • Beyenal, H. and Babauta, J. 2013. Microsensors and microscale gradient in biofilms. In Biochemical Engineering/Biotechnology, edited by Muffler, K. and Ulber, R., Springer. http://dx.doi.org/10.1007/10_2013_247.
  • Abu-Lail, N. and Beyenal, H. 2013. Characterization of bacteria-biomaterial interactions from a single cell to microbial communities. In Characterization of Biomaterials, edited by Bose, S. and Bandyopadhyay, A.,, pp. 235-253, Elsevier, http://dx.doi.org/10.1016/B978-0-12-415800-9.00006-1
  • Cao, B., Bulbul, A. and Beyenal, H. 2010. Immobilization of uranium in groundwater using biofilms. In Emerging Environmental Technologies, Vol II, edited by Shah, V., pp. 1-38, Springer,http://dx.doi.org/10.1007/978-90-481-3352-9_1
  • Lewandowski, Z. and Beyenal., H. 2009. Methods for imaging and quantifying the structure of biofilms. In Biofilms in the Food and Beverage Industries, edited by Fratamico, P., Annous, B. and Guenther, J. Woodhead Publishing http://dx.doi.org/10.1533/9781845697167.1.99
  • Lewandowski, Z., Beyenal., H. 2009. Mechanism of microbially influenced corrosion. In Marine and Industrial Biofouling, edited by  Flemming, H.C., Venkatesan, R., Murthy, S.P.  and Cooksey, K., Springer Series on Biofilms, pp. 35-64. http://dx.doi.org/10.1007/978-3-540-69796-1_3
  • Lewandowski, Z. and Beyenal, H. 2003. Mass transfer in heterogeneous biofilms. In Biofilms in Wastewater Treatment, edited by Wuertz, S., Bishop, P.L., and Wilderer, P.A., pp. 145-172, IWA Publishing, London.
  • Lewandowski, Z. and Beyenal, H. 2003. Use of microsensors to study biofilms. In Biofilms in Medicine, Industry and Environmental Biotechnology–Characteristics, Analysis and Control, edited by Lens, P., O’Flaherty, V., Moran, A., Stoodley, P. and Mahony, T., pp. 375-412, IWA Publishing, London.
  • Lewandowski, Z. and Beyenal, H. 2001. Limiting-current-type microelectrodes for quantifying mass transport dynamics in biofilms. In Methods in Enzymology, edited by R.J. Doyle, Vol: 331, pp. 337-359, Academic Press.

Our Research Group