Publications

Peer-Reviewed Journal Articles

2024

[58] Liu, Y., Xu, B., Li, Y., Quek, S., Huang, K.* Eco-friendly and self-sanitizing microporous cellulose sponge (MCS)-based cooling media for mitigating microbial cross-contamination in the food cold chain. Advanced Science, 2024. http://doi.org/10.1002/advs.202309753

[57] Xiao, X., He, M., Ma, L., Lv, W., Huang, K., Yang, H., Li, Y., Zou, L., Xiao, Y., Wang, W. Insights into microbial contamination and antibiotic resistome traits in pork wholesale market: an evaluation of the disinfection effect of sodium hypochlorite. Journal of Hazardous Materials, 2024, 468, 133811. https://doi.org/10.1016/j.jhazmat.2024.133811

[56] Luo, X., Huang, K., Yu, Y., Yang, Q., Yang, H., Xiong, S., An, Y., Hu, Y. Insights into the potential mechanism of liquid nitrogen spray freezing’s influence on volatile compounds in surimi gels with different cross-linking degrees: Focus on oxidation, protein structure, intermolecular force and free amino acid alterations. Food Chemistry, 2024, 444, 138558. https://doi.org/10.1016/j.foodchem.2024.138558

[55] Luo, X., Huang, K., Lei, Y., An, Y., Xiong, S., Hu, Y. Effects of freezing on quality attributes of surimi gels with various cross-linking degrees using MTGase: Quantitative analysis based on the ice crystals, network structure, and taste substances. Journal of Food Engineering, 2024, 371, 111975. https://doi.org/10.1016/j.jfoodeng.2024.111975

[54] Guo, M., Tian, S., Wang, W., Xie, L., Xu, H., Huang, K.* Biomimetic leaves with immobilized catalase for machine learning-enabled validating fresh produce sanitation processes. Food Research International, 2024, 179, 114027. https://doi.org/10.1016/j.foodres.2024.114028

2023

[53] Liu, S., Quek, S., Huang, K.* Advanced strategies to overcome the challenges of bacteriophage-based antimicrobial treatments in food and agricultural systems. Critical Reviews in Food Science and Nutrition, 2023. https://doi.org/10.1080/10408398.2023.2254837

[52] Angane, M., Swift, S., Huang, K., Perera, J., Chen, X., Butts, C., Quek, S.Y. Synergistic antimicrobial interaction of plant essential oils and extracts against foodborne pathogens. Food Science & Nutrition, 2023, 12(2), 1189-1206. https://doi.org/10.1002/fsn3.3834

[51] Luo, X., Huang, K., Niu, Y., Zhang, X., An, Y., Liu, R., Xiong, S., Hu, Y. Effects of freezing methods on physicochemical properties, protein/fat oxidation and odor characteristics of surimi gels with different cross-linking degrees. Food Chemistry, 2023, 432, 137268. https://doi.org/10.1016/j.foodchem.2023.137268

[50] Kim, Y., Ma, L., Huang, K., Nitin, N. Bio-based antimicrobial compositions and sensing technologies to improve food safety. Current Opinion in Biotechnology, 2023, 79, 102871. https://doi.org/10.1016/j.copbio.2022.102871

2022

[49] Tao, M., Huang, K.* Bio-based chicken eggshell powder for efficient delivery of low-dose silver nanoparticles (AgNPs) to enhance their antimicrobial activities against foodborne pathogens and biofilms. ACS Applied Bio Materials, 2022, 5 (9), 4390-4399.  https://doi.org/10.1021/acsabm.2c00546

[48] Huang, K., Yi, J., Young, G.M., Nitin, N. Cell-based carriers incorporated antimicrobial coatings on diverse food contact surfaces for preventing cross-contamination of fresh produce. Food Control, 2022, 134: 108700.  https://doi.org/10.1016/j.foodcont.2021.108700

[47] Wang, Q., Yin, S., Shi, X., Fan, J., Huang, K., Gao, W., Xie, L., Ying, Y. High-sensitivity detection of trace imidacloprid and tetracycline hydrochloride by multi-frequency resonance metamaterials. Journal of Food Measurement and Characterization, 2022, 16(3): 2041-2048.  https://doi.org/10.1007/s11694-022-01314-4

[46] Wang, Y., Dai, B., Ma, C., Zhang, Q., Huang, K., Luo, X., Liu, X., Ying, Y., Xie, L. Cross‐wavelength hierarchical metamaterials enabled for trans‐scale molecules detection simultaneously. Advanced Science, 2022, 9(13): 2105447.  https://doi.org/10.1002/advs.202105447

[45] Angane, M., Swift, S., Huang, K., Butts, C.A., Quek, S.Y. Essential oils and their major components: An updated review on antimicrobial activities, mechanism of action and their potential application in the food industry. Foods, 2022, 11(3): 464.  https://doi.org/10.3390/foods11030464

[44] Yu, Z., Jung, D., Park, S., Hu, Y., Huang, K., Rasco, B.A., Wang, S., Ronholm, J., Lu, X., Chen, J. Smart traceability for food safety. Critical Reviews in Food Science and Nutrition, 2022, 62(4): 905-916.  https://doi.org/10.1080/10408398.2020.1830262

[43] Yi, J., Huang, K., Nitin, N. Modeling bioaffinity‐based targeted delivery of antimicrobials to Escherichia coli biofilms using yeast microparticles. Part I: Model development and numerical simulation. Biotechnology and bioengineering, 2022, 119(1), 236-246.  https://doi.org/10.1002/bit.27971

[32] Yi, J., Huang, K., Nitin, N. Modeling bioaffinity‐based targeted delivery of antimicrobials to Escherichia coli biofilms using yeast microparticles. Part II: parameter evaluation and validation. Biotechnology and bioengineering, 2022, 119(1): 247-256.  https://doi.org/10.1002/bit.27969

2021

[41] Liu, S., Tao, M., Huang, K.* Encapsulation of Mānuka essential oil in yeast microcarriers for enhanced thermal stability and antimicrobial activity. Food and Bioprocess Technology, 2021, 14(12): 2195-2206. https://doi.org/10.1007/s11947-021-02714-y 

[40] Tao, M., Chen, J., Huang, K.* Bio-based antimicrobial delivery systems for improving microbial safety and quality of raw or minimally processed foods. Current Opinion in Food Science, 2021, 41: 189-200.  https://doi.org/10.1016/j.cofs.2021.04.011

[39] Huang, K., Yang, X., Ma, Y., Sun, G., Nitin, N. Incorporation of antimicrobial bio-based carriers onto poly(vinyl alcohol-co-ethylene) surface for enhanced antimicrobial activity. ACS Applied Materials and Interfaces, 2021, 13(30): 36275-36285.  https://doi.org/10.1021/acsami.1c07311

[38] Zhang, H., Zhang, H., Zhao, L., Zhou, B., Li, P., Liu, B., Wang, Y., Yang, C., Huang, K., Zhang, C. Ecosystem impact and dietary exposure of polychlorinated biphenyls (PCBs) and heavy metals in Chinese mitten crabs (Eriocheir sinensis) and their farming areas in Jiangsu, China. Ecotoxicology and Environmental Safety, 2021, 227: 112936.  https://doi.org/10.1016/j.ecoenv.2021.112936

[37] Zhou, R., Wang, C., Huang, Y., Huang, K., Wang, Y., Xu, W., Xie, L., Ying, Y. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures. Biosensors and Bioelectronics, 2021, 188: 113336.  https://doi.org/10.1016/j.bios.2021.113336

[36] Yi, J., Huang, K., Ma, Y., Sun, G., Young, G.M., Nitin, N. Antimicrobial N-Halamine incorporated Poly(Vinyl alcohol-co-ethylene) films for reducing cross-contamination of fresh produce. Food Control, 2021, 124: 107880.  https://doi.org/10.1016/j.foodcont.2021.107880

[35] Dou, F., Huang, K., Nitin, N. Targeted photodynamic treatment of bacterial biofilms using curcumin encapsulated in cells and cell wall particles. ACS Applied Bio Materials, 2021, 4: 514-522.  https://doi.org/10.1021/acsabm.0c01051

2020

[34] Huang, K., Nitin, N. Food grade microscale dispersion enhances UV stability and antimicrobial activity of a model bacteriophage (T7) for reducing bacterial contamination (Escherichia coli) on the plant surface. Journal of Agricultural and Food Chemistry, 2020, 68 (39): 10920-10927.  https://doi.org/10.1021/acs.jafc.0c02795

[33] Huang, K., Tian, Y., Tan, J., Salvi, D., Karwe, M., Nitin, N. Role of contaminated organic particles in cross-contamination of fresh produce during washing and sanitation. Postharvest Biology and Technology, 2020, 168: 111283. https://doi.org/10.1016/j.postharvbio.2020.111283

[32] Yi, J., Huang, K., Young, G. M., Nitin, N. Quantitative analysis and influences of contact dynamics on bacterial cross-contamination from contaminated fresh produce. Journal of Food Engineering, 2020, 270: 109771. https://doi.org/10.1016/j.jfoodeng.2019.109771

2019

[31] Huang, K., Dou, F., Nitin, N. Bio-based sanitizer delivery systems for improved sanitation of bacterial and fungal biofilms. ACS Applied Materials and Interfaces, 2019, 11(19): 17204-17214.  https://doi.org/10.1021/acsami.9b02428

[30] Ma, Y., Li, J., Si, Y., Huang, K., Nitin, N., Sun, G. Rechargeable Antibacterial N-Halamine Films with Antifouling Function for Food Packaging Applications. ACS applied materials & interfaces, 11(19): 17814-17822. https://doi.org/10.1021/acsami.9b03464

[29] Huang, K., Nitin, N. Edible bacteriophage based antimicrobial coating on fish feed for enhanced treatment of bacterial infections in aquaculture industry. Aquaculture, 2019, 502: 18-25.  https://doi.org/10.1016/j.aquaculture.2018.12.026

[28] Huang, K., Nitin, N. Antimicrobial particle based novel sanitizer for enhanced decontamination of fresh produce. Applied and Environmental Microbiology, 2019, 10.1128/AEM.02599-18.  https://doi.org/10.1128/AEM.02599-18

2018

[27] Huang, K., Wrenn, S., Tikekar, R., Nitin, N. Efficacy of decontamination and a reduced risk of cross-contamination during ultrasound-assisted washing of fresh produce. Journal of Food Engineering, 2018, 224: 95–104.  https://doi.org/10.1016/j.jfoodeng.2017.11.043

[26] Huang, K., Tian, Y., Salvi, D., Karwe, M., Nitin, N. Influence of exposure time, shear stress, and surfactants on detachment of Escherichia coli O157:H7 from fresh lettuce leaf surfaces during washing process. Food and Bioprocess Technology, 2018, 11: 621–633.  https://doi.org/10.1007/s11947-017-2038-5

[25] Cossu, A., Huang, K., Cossu, M., Tikekar, R.V., Nitin, N. Fog, phenolic acids and UV-A light irradiation: A new antimicrobial treatment for decontamination of fresh produce. Food Microbiology, 2018, 76: 204-208.  https://doi.org/10.1016/j.fm.2018.05.013

[24] Si, Y., Zhang, Z., Wu, W., Fu, Q., Huang, K., Nitin, N., Ding, B., Sun, G. Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Science Advances, 2018, 4: eaar5931.  https://doi.org/10.1126/sciadv.aar5931

2017

[23] Huang, K., Nitin, N. Enhanced removal of Escherichia coli O157: H7 and Listeria innocua from fresh lettuce leaves using surfactants during simulated washing. Food Control, 2017, 79: 207–217.  https://doi.org/10.1016/j.foodcont.2017.03.032

[22] Guo, J., Li, Z., Huang, K., Li, Y., Wang, J. Morphology analysis of Escherichia coli treated with non-thermal plasma. Journal of Applied Microbiology, 2017, 122(1): 87–96.  https://doi.org/10.1111/jam.13335

[21] Guo, J., Huang, K., Wang, X., Lyu, C., Yang, N., Li, Y., Wang, J. Inactivation of yeast on grapes by plasma-activated water and its effects on quality attributes. Journal of Food Protection, 2017, 80(2): 225–230. https://doi.org/10.4315/0362-028X.JFP-16-116 (2022 Most cited Research Publication Award, 1st Place) 

[20] Chen, X., Yu, L., Jiang, T., Tian, H., Huang, K.*, Wang, J.* A high-voltage solid-state switch based on series connection of IGBTs for PEF applications. IEEE Transactions on Plasma Science, 2017, 45(8): 2328–2334.  https://doi.org/10.1109/TPS.2017.2713781

2016

[19] Huang, K., Chen, J., Nugen, S. R., Goddard, J. M. Hybrid antifouling and antimicrobial coatings prepared by electroless co-deposition of fluoropolymer and cationic silica nanoparticles on stainless steel: efficacy against Listeria monocytogenes. ACS Applied Materials and Interfaces, 2016, 8: 15926–15936.  https://doi.org/10.1021/acsami.6b04187

[18] Huang, K., McLandsborough, L. A., Goddard, J. M. Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel. Biofouling, 2016, 32: 523–533.  https://doi.org/10.1080/08927014.2016.1160284

[17] Yang, N.1, Huang, K.1, Lyu, C., Wang, J. Pulsed electric field technology in the manufacturing processes of wine, beer, and rice wine: A review. Food Control, 2016, 61: 28–38.  https://doi.org/10.1016/j.foodcont.2015.09.022

[16] Lyu, C.1, Huang, K.1, Yang, N., Wang, H., Wang, J. Combination of thermosonication and pulsed electric fields treatments for controlling Saccharomyces cerevisiae. Food and Bioprocess Technology, 2016, 9: 1854–1864.  https://doi.org/10.1007/s11947-016-1769-z

[15] Jindal, S., Anand, S., Huang, K., Goddard, J., Metzger, L., Amamcharla, J. Evaluation of modified stainless steel surfaces targeted to reduce biofilm formation by common milk sporeformers. Journal of Dairy Science, 2016, 99: 9502–9513.  https://doi.org/10.3168/jds.2016-11395

2015

[14] Huang, K., Goddard, J. M. Stability of nonfouling electroless nickel-polytetrafluoroethylene coatings after exposure to commercial dairy equipment sanitizers. Journal of Dairy Science, 2015, 98: 1–12.   https://doi.org/10.3168/jds.2015-9714

[13] Huang, K., Goddard, J. M. Influence of fluid milk product composition on fouling and cleaning of Ni-PTFE modified stainless steel heat exchanger surfaces. Journal of Food Engineering, 2015, 158: 22–29.  https://doi.org/10.1016/j.jfoodeng.2015.02.026 

[12] Guo, J., Huang, K., Wang, J. Bactericidal effect of various non-thermal plasma agents and the influence of experimental conditions in microbial inactivation: A review. Food Control, 2015, 50: 482–490.  https://doi.org/10.1016/j.foodcont.2014.09.037

[11] Chen, J., Li, Y., Huang, K., Wang, P., He, L., Carter, K. R., Nugen, S. R. Nanoimprinted patterned pillar substrates for surface-enhanced Raman scattering applications. ACS Applied Materials and Interfaces, 2015, 7: 22106–22113. https://doi.org/10.1021/acsami.5b07879

Before 2014

[10] Huang, K., Jiang, T., Wang, W., Gai, L., Wang, J. A comparison of pulsed electric field resistance for microorganisms with different biological factors via numerical simulation. Food and Bioprocess Technology, 2014, 7: 1981–1995.  https://doi.org/10.1007/s11947-014-1272-3

[9] Huang, K., Yu, L., Wang, W., Gai, L., Wang, J. Comparing the pulsed electric field resistance of the microorganisms in grape juice: application of the Weibull model. Food Control, 2014, 35: 241–251.  https://doi.org/10.1007/s11947-014-1272-3

[8] Huang, K., Yu, L., Liu, D., Gai, L., Wang, J. Modeling of yeast inactivation of PEF-treated Chinese rice wine: effects of electric field intensity, treatment time and initial temperature. Food Research International, 2013, 54: 456–467.  https://doi.org/10.1016/j.foodres.2013.07.046

[7] Huang, K., Yu, L., Gai, L., Wang, J. Coupled simulations in co-linear and coaxial continuous pulsed electric fields treatment chambers. Transactions of the ASABE, 2013, 56: 1473–1484.  https://doi.org/10.13031/trans.56.9167 

[6] Huang, K., Tian, H., Gai, L., Wang, J. A review of kinetic models for inactivating microorganisms and enzymes by pulsed electric field processing. Journal of Food Engineering, 2012, 111: 191–207.   https://doi.org/10.1016/j.jfoodeng.2012.02.007

[5] Huang, K., Wang, J. Designs of pulsed electric fields treatment chambers for liquid foods pasteurization process: A review. Journal of Food Engineering, 2009, 95: 227–239.  https://doi.org/10.1016/j.jfoodeng.2009.06.013

[4] Huang, K., Wang, H., Xu, H., Wang, J., Ying, Y. NIR spectroscopy based on least square support vector machines for quality prediction of tomato juice. Spectroscopy and Spectral Analysis, 2009, 29: 931–934.  https://doi.org/10.3964/j.issn.1000-0593(2009)04-0931-04

[3] Yu, L., Huang, K., Wang, H., Gai, L., Wang, J. Study of key technologies on series connection of IGBTs. High Power Laser and Particle Beams, 2013, 25: 1315–1319.  https://doi.org/10.11884/HPLPB201931.190206 

[2] Sun, T., Huang, K., Xu, H., Ying, Y. Research advances in nondestructive determination of internal quality in watermelon/melon: A review. Journal of Food Engineering, 2010, 100: 569– 577.  https://doi.org/10.1016/j.jfoodeng.2010.05.019

[1] Xu, H., Wang, H., Huang, K., Ying, Y., Yang, C., Qian, H., Hu, J. Comparison of PLS and SMLR for nondestructive determination of sugar content in honey peach using NIRS. Spectroscopy and Spectral Analysis, 2008, 28: 2523–2526.


Book Chapters

[1] Yi, J., Nitin, N., Huang, K.* Mechanisms of microbial cross-contamination and novel intervention strategies in fresh produce processing. The Produce Contamination Problem (Third Edition), 2023, 353-379. https://doi.org/10.1016/B978-0-12-819524-6.00005-7


*Corresponding author

1 Equally contributed first author