Skip to main content Skip to navigation
John Peters' lab Personnel

Krista Shisler

Research Associate

 

Washington State University
Institute of Biological Chemistry
299 Clark Hall
Pullman, WA 99164

 

E-mail:krista.shisler@wsu.edu

 

Research Interests

 

After earning my bachelor’s degree in Chemistry at the University of Wyoming, I attended graduate school at Montana State University where I received my Ph.D. in Biochemistry. My graduate work focused on bioinorganic chemistry of anaerobic metalloenzymes containing [4Fe-4S] clusters. I characterized the active site structure of radical SAM enzymes throughout various stages of catalysis. Following my Ph.D. work, I continued with bioinorganic chemistry and held a post doc position at Montana State University studying heme proteins. Keeping with the theme of iron, I am working with [FeFe] hydrogenase in the Peters lab in addition to the carboxylases 2-KPCC and acetone carboxylase. I enjoy observing metal centers with a variety of spectroscopic techniques and discovering intermediate states. When I’m not busy in the lab, I take care of my two young children and husband.

Education

 

  • 2016       Ph.D. in Biochemistry, Dr. Joan Broderick, Montana State University, Bozeman, MT
  • 2009       Bachelor’s of Science, University of Wyoming, Laramie, WY

Research Experience

  • 2019-Present     Postdoctoral Research, Dr. John Peters, Washington State University, Pullman, WA
  • 2016-2017            Postdoctoral Research, Dr. Jennifer DuBois, Montana State University, Bozeman, MT

 

Publications

  1. Decarboxylation involving a ferryl, propionate, and a tyrosyl group in a radical relay yields heme b. Streit, B. R.; Celis, A.; Moraski, G. C.; Shisler, K. A.; Shepard, E. M.; Rodgers, K. R.; Lukat-Rodgers, G. S.; DuBois, J. L. Journal of Biological Chemistry (2018), 293(11): 3989-3999.
  2. Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme. Shisler, K.; Hutcheson, R.; Horitani, M.; Duschene, K.; Crain, A.; Byer, A.; Shepard, E.; Rasmussen, A.; Yang, J.; Broderick, W.; Vey, J.; Drennan, C.; Hoffman, B.; Broderick, J. Journal of the American Chemical Society (2017), 139: 11803-11813.
  3. Electron Spin Relaxation and Biochemical Characterization of the Hydrogenase Maturase HydF: Insights into [2Fe-2S] and [4Fe-4S] Cluster Communication and Hydrogenase Activation. Shepard, E. M.; Byer, A. S.; Aggarwal, P.; Betz, J. N.; Scott, A. G.; Shisler, K. A.; Usselman, R. J.; Eaton, G. R.; Eaton, S. S.; Broderick, J.B. Biochemistry, (2017), 56, 3234-3247.
  4. Reactions of ferrous coproheme decarboxylase (HemQ) with O2 and H2O2 yield ferric heme b. Streit, B.; Celis, A.; Shisler, K.; Rodgers, K.; Lukat-Rodgers, G.; DuBois, J. Biochemistry (2017), 56: 189-201.
  5. A Structure-Based Mechanism for Oxidative Decarboxylation Reactions Mediated by Amino Acids and Heme Propionates. Celis, A.; Gauss, G.; Streit, B.; Shisler,K.; Moraski, G.; Rodgers, K.; Lukat-Rodgers, G.; Peters, J.; DuBois, J. Journal of the American Chemical Society (2017), 139: 1900-1911.
  6. Radical SAM catalysis via an organometallic intermediate with an Fe–[5′-C]-deoxyadenosyl bond. Horitani, M.; Shisler, K.; Broderick, W.; Hutcheson, R.; Duschene, K.; Marts, A.; Hoffman, B.; Broderick, J. Science (2016), 352: 822-825.
  7. Why Nature Uses Radical S‑Adenosyl-L-methionine Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5′-dAdo“Free Radical” Is Never Free. Horitani, M.; Byer, A.; Shisler, K.; Chandra, T.; Broderick, J.; Hoffman, B. Journal of the American Chemical Society (2015), 137: 7111-7121.
  8. Glycyl Radical Activating Enzymes: Structure, Mechanism, and Substrate Interactions. Shisler, K.; Broderick, B. Archives of Biochemistry and Biophysics (2014), 546: 64-71.
  9. Emerging Themes in Radical SAM Chemistry. Shisler, K.; Broderick, B. Current Opinion in Structural Biology: Catalysis and Regulation Issue (2012), 22: 701-710.