Krista Shisler
Research Associate
Washington State University
Institute of Biological Chemistry
425 Clark Hall
Pullman, WA 99164
E-mail:krista.shisler@wsu.edu
Research Interests
After earning my bachelor’s degree in Chemistry at the University of Wyoming, I attended graduate school at Montana State University where I received my Ph.D. in Biochemistry. My graduate work focused on bioinorganic chemistry of anaerobic metalloenzymes containing [4Fe-4S] clusters. I characterized the active site structure of radical SAM enzymes throughout various stages of catalysis. Following my Ph.D. work, I continued with bioinorganic chemistry and held a post doc position at Montana State University studying heme proteins. Keeping with the theme of iron, I am working with [FeFe] hydrogenase in the Peters lab in addition to the carboxylases 2-KPCC and acetone carboxylase. I enjoy observing metal centers with a variety of spectroscopic techniques and discovering intermediate states. When I’m not busy in the lab, I take care of my two young children and husband.
Education
- 2016 Ph.D. in Biochemistry, Dr. Joan Broderick, Montana State University, Bozeman, MT
- 2009 Bachelor’s of Science, University of Wyoming, Laramie, WY
Research Experience
- 2019-Present Postdoctoral Research, Dr. John Peters, Washington State University, Pullman, WA
- 2016-2017 Postdoctoral Research, Dr. Jennifer DuBois, Montana State University, Bozeman, MT
Publications
- The unique Phe–His dyad of 2-ketopropyl coenzyme M oxidoreductase/carboxylase selectively promotes carboxylation and S–C bond cleavage. Prussia, G.; Shisler, K.; Zadvornyy, O.; Streit, B.; DuBois, J.; Peters, J. Journal of Biological Chemistry (2021), 297:100961.
- Insights into the unique carboxylation reactions in the metabolism of propylene and acetone. Mus, F.; Wu, H.; Alleman, A.; Shisler, K.; Zadvornyy, O.; Bothner, B.; DuBois, J.; Peters, J. Biochemical Journal (2020), 477: 2027-2038.
- Monovalent Cation Activation of the Radical SAM Enzyme Pyruvate Formate-Lyase Activating Enzyme. Shisler, K.; Hutcheson, R.; Horitani, M.; Duschene, K.; Crain, A.; Byer, A.; Shepard, E.; Rasmussen, A.; Yang, J.; Broderick, W.; Vey, J.; Drennan, C.; Hoffman, B.; Broderick, J. Journal of the American Chemical Society (2017), 139: 11803-11813.
- Electron Spin Relaxation and Biochemical Characterization of the Hydrogenase Maturase HydF: Insights into [2Fe-2S] and [4Fe-4S] Cluster Communication and Hydrogenase Activation. Shepard, E. M.; Byer, A. S.; Aggarwal, P.; Betz, J. N.; Scott, A. G.; Shisler, K. A.; Usselman, R. J.; Eaton, G. R.; Eaton, S. S.; Broderick, J.B. Biochemistry, (2017), 56, 3234-3247.
- Reactions of ferrous coproheme decarboxylase (HemQ) with O2 and H2O2 yield ferric heme b. Streit, B.; Celis, A.; Shisler, K.; Rodgers, K.; Lukat-Rodgers, G.; DuBois, J. Biochemistry (2017), 56: 189-201.
- A Structure-Based Mechanism for Oxidative Decarboxylation Reactions Mediated by Amino Acids and Heme Propionates. Celis, A.; Gauss, G.; Streit, B.; Shisler,K.; Moraski, G.; Rodgers, K.; Lukat-Rodgers, G.; Peters, J.; DuBois, J. Journal of the American Chemical Society (2017), 139: 1900-1911.
- Radical SAM catalysis via an organometallic intermediate with an Fe–[5′-C]-deoxyadenosyl bond. Horitani, M.; Shisler, K.; Broderick, W.; Hutcheson, R.; Duschene, K.; Marts, A.; Hoffman, B.; Broderick, J. Science (2016), 352: 822-825.
- Why Nature Uses Radical S‑Adenosyl-L-methionine Enzymes so Widely: Electron Nuclear Double Resonance Studies of Lysine 2,3-Aminomutase Show the 5′-dAdo• “Free Radical” Is Never Free. Horitani, M.; Byer, A.; Shisler, K.; Chandra, T.; Broderick, J.; Hoffman, B. Journal of the American Chemical Society (2015), 137: 7111-7121.
- Glycyl Radical Activating Enzymes: Structure, Mechanism, and Substrate Interactions. Shisler, K.; Broderick, B. Archives of Biochemistry and Biophysics (2014), 546: 64-71.
- Emerging Themes in Radical SAM Chemistry. Shisler, K.; Broderick, B. Current Opinion in Structural Biology: Catalysis and Regulation Issue (2012), 22: 701-710.