Skip to main content Skip to navigation
Low Moisure Food Safety Low Moisure Food Safety

By Our Group

Thermal Resistance Influenced by Water Activity

  • Yang, R., Tang., J. 2023. Developing thermal control of Salmonella in low-moisture foods using predictive models. Food Safety Magazine. August/September Issue. [full text]
  • Zhou, X., Gezahegn, Y., Zhang, S., Tang, Z., Takhar, P.S., Pedrow, P.D., Sablani, S.S.,  Tang, J. 2023. Theoretical reasons for rapid heating of vegetable oils by microwaves. Current Research in Food Science, 7:100641. [full text]
  • Sun., S., Xie, Y., Zhou, X., Zhu, M. J., Sablani, S., Tang, J. 2023. Survival and thermal resistance of Salmonella in chocolate products with different water activities. Food Research International, 172:113209. [full text]
  • Yang, R., Lombardo, S.P., Conway, W.F., Tang, J. 2022. Inactivation of Salmonella Enteritidis PT30 on black peppercorns in thermal treatments with controlled relative humidities. Food Research International. 162:112101. [full text]
  • Sun, S., Xie, Y., Yang, R., Zhu, M.J., Sablani, S.S., Tang, J. 2022. The influence of temperature and water activity on thermal resistance of Salmonella in milk chocolate. Food Control. 143:109292.  [full text]
  • Yang, R., Wei, L., Dai, Jianwu, Tang, J. 2022. Thermal death kinetics of Salmonella Enteritidis PT30 in peanut butter as influenced by water activity. Food Research International. 157: 111288. [full text]
  • Yang, R., Cheng, T., Hong, Y.K., Wei, L., Tang, J. 2022. The effect of dry headspace on the thermal resistance of bacteria in peanut oil and peanut butter in thermal treatments. Food Control. 137: 108851. [full text]
  • Xie, Y., Zhang, S., Sun, S., Zhu, M.J., Sablani, S., Tang, J. 2022. Survivability of Salmonella and Enterococcus faecium in chili, cinnamon and black pepper powders during storage and isothermal treatments. Food Control. 137: 108935. [full text]
  •  Xu, J., Yang R., Jin, Y., Barnett, G., Tang, J. 2020. Modeling the temperature-dependent microbial reduction of Enterococcus faecium NRRL B-2354 in radio-frequency pasteurized wheat flour, Food Control. [full text]
  • Xu, J., Shah, D.H., Song, J., Tang, J. 2020. Changes in cellular structure of heat-treated Salmonella in low-moisture environments. Journal of Applied Microbiology. 129(2): 434-442. [full text]
  • Jin, Y., Tang, J., Zhu, M.J. 2020. Water activity influence on the thermal resistance of Salmonella in soy protein powder at elevated temperatures. Food Control. 113:107160. [full text]
  • Cheng, T., Tang, J., Yang, R., Xie, Y., Chen, L., Wang, S. 2021. Methods to obtain thermal inactivation data for pathogen control in low-moisture foods. Trends in Food Science & Technology. 112: 174-187. [full text]
  • Perez-Reyes, M., Tang, J., Zhu M.J., Barbosa-Canovas, G.V. 2021. The influence of elevated temperatures and composition on the water activity of egg powders. Journal of Food Processing and Preservation. 45:e15269. [full text]
  • Xie, Y., Cheng, T., Wei, L., Zhu, M.J., Sablani, S.S., Tang, J. 2021. Thermal inactivation of Salmonella Enteritidis PT30 in ground cinnamon as influenced by water activity and temperature. Food Control. 124:107935. [full text]
  • Perez-Reyes, M.E., Tang, J., Barbosa-Canovas, G.V., Zhu, M.J. 2021. Influence of water activity and dry-heating time on egg white powders quality. LWT. 140:110717. [full text]
  • Alshammari, J., Dhowlaghar, N., Xie, Y., Xu, J., Tang, J., Sablani, S., Zhu, M.J. 2021.Survival of  Salmonella and Enterococcus faecium in high fructose corn syrup and honey at room temperature (22 oC). Food Control. [full text]
  • Alshammari, J., Xu, J., Tang, J., Sablani, S., Zhu, M.J. 2020. Thermal resistance of Salmonella in low-moisture high-sugar products. Food Control. 114:107255. [full text]
  • Xie, Y., Xu, J., Yang, R., Alshammari, J., Zhu, M.J., Sablani, S., Tang, J. 2020. Moisture content of bacterial cells determines thermal resistance of Salmonella Enteritidis PT 30. Appl. Environ. Microbiol. [full text] 
  • Yang, R., Jie X., Lombardo, S.P., Ganjyal, G.M., Tang, J. 2020. Desiccation in oil protects bacteria in thermal processing. Food Research International. 137: 109519. [full text]
  • Yang, R., Guan, J., Sun, S., Sablani, S.S., Tang, J. 2020. Understanding water activity change in oil with temperature. Current Research in Food Science. 3:158-165. [full text]
  • Yang, R., Xie, Y., Lombardo, S.P., Tang, J. 2020. Oil protects bacteria from humid heat in thermal processing. Food Control. Published online: 10, October, 2020 [full text]
  • Perez-Reyes, M., Jie, X., Zhu, M.J., Tang, J. 2020. Influence of low water activity on the thermal resistance of Salmonella PT30 and Enterococcus faecium as its surrogate in egg powders. Food Science and Technology International. Published online: 4, November, 2020 [full text]
  • Tsai, H.C., Ballom, K.F., Xia, S., Tang, J., Marks, B.P. 2019. Evaluation of Enterococcus faecium NRRL B-2354 as a surrogate for Salmonella during cocoa powder thermal processing. Food Microbiology. 82: 135-141. [full text]
  • Jin, Y., Tang, J. 2019. Improved design of aluminum test cell to study the thermal resistance of Salmonella enterica and Enterococcus faecium in low-water activity foods. Food Control. 104: 343-348. [full text]
  • Tsai, H.C., Taylor, M.H., Song, X., Shen, L., Tang, J., Zhu, M.J. 2019. Thermal resistance of Listeria monocytogenes in natural unsweetened cocoa powder under different water activity. Food Control. 102: 22-28. [full text]
  • Xu, J., Tang, J., Jin, Y., Song, J., Yang, R., Sablani, S.S., Zhu, M.J. 2019. High temperature water activity as a key factor influencing survival of Salmonella Enteritidis PT30 in thermal processing. Food Control. 98:520-528. [full text]
  • Taylor, M., Tsai, H.C., Rasco, B., Tang, J., Zhu, M.J. 2018. Stability of Listeria monocytogenes in wheat flour during extended storage and isothermal treatment. Food Control. 91: 434-439. [full text]
  • Liu, S., Tang, J., Tadapaneni, R.K., Yang, R., Zhu, M.J. 2018. Exponentially increased thermal resistance of Salmonella spp. and Enterococcus faecium at reduced water activity. Applied and Environmental Microbiology. 84: e02742-17. [full text]
  • Liu, S., Rojas, R.V., Gray, P., Zhu, M.J., Tang, J. 2018. Enterococcus faecium as a Salmonella surrogate in the thermal processing  of wheat flour: Influence of water activity at high temperatures. Food Microbiology. 74: 92-99. [full text]
  • Tadapaneni, R.K., Xu, J., Yang, R., Tang, J. 2018. Improving design of thermal water activity cell to study thermal resistance of Salmonella in low-moisture foods. LWT – Food Science and Technology. 92: 371-379. [full text]
  • Syamaladevi, R.M., Tang, J., Zhong, Q., 2016. Water diffusion from a bacterial cell in low-moisture foods. Journal of Food Science. R1-R6. [full text]
  • Syamaladevi, R.M., Tang, J., Villa-Rojas, R., Sablani, S., Carter, B., Campbell, G., 2016. Influence of water activity on thermal resistance of microorganisms in low-moisture foods: a review. Comprehensive Reviews in Food Science and Food Safety. 15: 353-370. [full text]
  • Villa-Rojas R., Tang J., Wang S., Gao M., Kang D-H., Mah J-H., Gray P., Sosa-Morales M.E., Lopez-Malo A. 2013. Thermal inactivation of Salmonella Enteritidis PT 30 in almond kernels as influenced by water activity. Journal of Food Protection, 76(1): 26-32. [full text]

Measurement of Water Activity at High Temperature

  • Tadapaneni, R.K., Yang, R., Carter, B., Tang, J. 2017. A new method to determine the water activity and the net isosteric heats of sorption for low moisture foods at elevated temperatures. Food Research International. 102: 203-212. [full text]
  • Syamaladevi, R.M., Tadapaneni, R.K., Xu, J., Villa-Rojas, R., Tang, J., Carter, B., Sablani, S., Marks, B., 2016. Water activity change at elevated temperatures and thermal resistance of Salmonella in all purpose wheat flour and peanut butter. Food Research International 81: 163-170. [full text]

Process Validation

  • Liu, S., Roopesh, M.S., Tang, J., Wu, Q., Qin, W. 2022. Review: Recent development in low-moisture foods: Microbial safety and thermal process. Food Research International. 155: 111072. [full text]
  • Liu, S., Wei, X., Tang, J., Qin, W., Wu, Q. 2021. Review: Recent developments in low-moisture foods: microbial validation studies of thermal pasteurization processes. Critical Reviews in Food Science and Nutrition. Dec. 20, 2021: 1-11. [full text]
  • Ballom, K., Dhowlaghar, N., Tsai, H.C., Yang, R., Tang, J., Zhu, M.J. 2021. Radiofrequency pasteurization against Salmonella and Listeria monocytogenes in cocoa powder. LWT – Food Science and Technology. 145:111490. [full text]
  • Xu, J., Song, J., Tan, J., Villa-Rojas, R., Tang, J., 2020. Dry-inoculation methods for low-moisture foods. Trends in Food Science & Technology. 103:68-77. [full text]
  • Ozturk, S., Liu, S., Xu, J., Tang, J., Chen, J., Singh, R. K., Kong, F. 2019. Inactivation of Salmonella Enteritidis and Enterococcus faecium NRRL B-2354 in corn flour by radio frequency heating with subsequent freezing. LWT – Food Science and Technology. 111: 782-789. [full text]
  • Yang, J., Tang, J., Wang, Y., Koral, T.L. 2018. Radio-frequency applications for food processing and safety. Annual Review of Food Science and Technology. 9:105-27. [full text]
  • Xu, J., Liu, S., Tang, J., Ozturk, S., Kong, F., Shah, D.H. 2018. Application of freeze-dried Enterococcus faecium NRRL B-2354 in radio-frequency pasteurization of wheat flour. LWT – Food Science and Technology. 90: 124-131. [full text]
  • Liu, S., Ozturk, S., Xu, J., Kong, F., Gray, P., Zhu, M.J., Sablani, S.S., Tang, J. 2018. Microbial validation of radio frequency pasteurization of wheat flour by inoculated pack studies. Journal of Food Engineering. 217: 68-74. [full text]
  • Xu, J., Liu, S., Song, J., Tang, J., Zhu, M., Gray, P. 2018. Dry-inoculation method for thermal inactivation studies in wheat flour using freeze-dried Enterococcus faecium NRRL B-2354. LWT – Food Science and Technology. 89: 10-17. [full text]
  • Alfaifi, B., Tang, J., Rasco, B., Wang, S., Sablani, S., 2016. Computer simulation analyses to improve radio frequency (RF) heating uniformity in dried fruits for insect control. Innovative Food Science and Emerging Technologies. 37: 125-137. [full text]
  • Jiao, Y., Tang, J., Wang, S., 2014. A new strategy to imporve heating uniformity of low moisture foods in radio frequency treatment for pathogen control. Journal of Food Engineeering. 141: 128-138. [full text].
  • Jiao, Y., Tang, J., Wang, S., Koral, T. 2014. Influence of dielectric properties on the heating rate in free-runnng oscillator radio frequency systems. Journal of Food Engineering, 120: 197-203. [full text]
  • Balbaifi, B., Tang, J., Jiao, Y., Wang, S., Rasco, B.,, Jiao, S., Sablani, S. 2014. Radio frequency disinfestation treatments for dried fruit: Model development and validation. Journal of Food Engineering, 120: 268-276. [full text]
  • Gao M., Tang J., Johnson J.A., Wang S. 2012. Dielectric properties of ground almond shells in the development of radio frequency and microwave pasteurization, Journal of Food Engineering, 112(4): 282-287. [full text]
  • Gao M., Tang J., Villa-Rojas R., Wang Y., Wang S. 2011. Pasteurization process development for controlling Salmonella in in-shell almonds using radio frequency energy. Journal of Food Engineering, 104(2): 299-306. [full text]
  • Tiwari G., Wang S., Tang J., Birla S.L. 2011. Analysis of radio frequency (RF) power distribution in dry food materials. Journal of Food Engineering, 104: 548-556. [full text]
  • Tiwari G., Wang S., Tang J., Birla S.L. 2011. Computer simulation model development and validation of radio frequency (RF) heating of dry food materials. Journal of Food Engineering, 105: 48-55. [full text]

By Others

  • Zhu, M., Song, X., Shen, X., Tang, J. 2020. Listeria monocytogenes in Almond Meal: Desiccation Stability and Isothermal Inactivation. Frontiers in Microbiology. Published online: 07 August, 2020. [full text]
  • Limcharoenchat, P., Buchholz, S.E., James, M.K., Hall, N.O., Ryser, E.T., Marks, B.P. 2018. Inoculation protocols influence the thermal resistance of Salmonella Enteritidis PT 30 in fabricated almond, wheat, and date products. Journal of Food Protection, Vol. 81 (4): 606-613. [full text]
  • Hildebrandt, I.M., Marks, B.P., Ryser, E.T., Villa-Rojas, R., Tang, J., Garces-Vega, F.J., Buchhilz, S.F., 2016. Effects of inoculation procedures on variability and repeatability of Salmonella thermal resistance in wheat flour. Journal of Food Protection, 79 (11): 1833–1839. [full text]
  • Pena-Melendex, Perry, J.J, Youse, A.E. 2014. Changes in thermal resistance of three Salmonella serovars in response to osmotic shock and adaptation at water activities reduced by different humectants. Journal of Food Proctection, 77(6): 914-918. [full text]
  • The Almond Board of California. Guidelines for process validation using Enterococcus faecium NRRL B-2354. [full text]
  • Jeong, S.G., Kang, D.H. 2014. Influence of moisture content on inactivation ofEscherichia coli 0157:H7 and Salmonella enterica serovar Typhimurium in powdered red and black pepper spices by radio-frequency heating.International Journal of Food Microbioogy, 176: 15-22. [full text]
  • Li, H., Fu, X., Bima, Y., Koontz, J., Megalis, C., Yang, F., Fleischman, G., Tortorello, M.L. 2014. Effect of the local microenvironment on survival and thermal inactivation of salmonella in low- and intermediate-moisture multi-ingredient foods. Journal of Food Protection, 77(1), 67-74. [full text]
  • Ha J.W., Kim S.Y., Ryu S.R., Kang D.H. 2013. Inactivation of salmonella enterica serovar typhimurium and escherichia coli O157:H7 in peanut butter cracker sandwiches by radio-frequency heating. Food Microbiology, 34, 145-150. [full text]
  • Cahill S.M., Wachsmuth I.K., Costarrica Mde L., Ben Embarek P.K. 2008. Powdered infant formula as a source of salmonella infection in infants. ClinInfect Dis, 46(2), 268-273. [full text]
  • Schaffner D.W., Buchanan R.L., Calhoun S., Danyluk M.D., Harris L.J., Djordjevic D.,  Whiting R.C.,  Kottapalli B., Wiedmann M. 2013. Issues to consider when setting intervention targets with limited data for low-moisture food commodities: A peanut case study. Journal of Food Protection, 76(2), 360-369. [full text]
  • Kim S.Y., Sagong H.G., Choi S.H., Ryu S., Kang D.H. 2012. Radio-frequency heating to inactivate salmonella typhimurium and escherichia coli O157:H7 on black and red pepper spice. International Journal of Food Microbiology, 153, 171-175. [full text]
  • Podolak R., Enache E., Stone W., Black D.G., Elliott P.H. 2010. Sources and risk factors for contamination, survival, persistence, and heat resistance of salmonella in low-moisture foods-Review. Journal of Food Protection, 73 (10), 1919-1936. [full text]