Skip to main content Skip to navigation
Department of Plant Pathology Molecular Plant Pathology Laboratory

Tanaka Lab – Personnel

 

Kiwamu Tanaka

Principal Investigator

 
Contact Information

WSU Plant Pathology
PO BOX 646430
Pullman, WA, 99163-6430
Office – Johnson Hall 355 | (509) 335-6418
Lab – Johnson Hall 358 | (509) 335-5813
Fax: (509) 335-9581

kiwamu.tanaka [at] wsu.edu

Teaching

Pl_P 535 Molecular Genetics of Plant-Pathogen Interactions

Profile Links

CAHNRSPlant Pathology | MPS | LinkedIn | ORCiD | Loop

Other links

Google ScholarResearchGate | Scoop.it!

Publications
  1. Moroz N, Huffaker A, Tanaka K (2017) Extracellular alkalinization assay for detection of early defense response. Curr. Protoc. Plant Biol. 2: 210-220 doi:10.1002/cppb.20057
  2. Yuan P, Jauregui E, Du L, Tanaka K, Poovaiah BW (2017) Calcium signatures and signaling events orchestrate plant-microbe interactions. Curr. Opin. Plant Biol. 38: 173-183 doi:10.1016/j.pbi.2017.06.003
  3. Hadwiger LA, Tanaka K (2017) A Simple and rapid assay for measuring phytoalexin pisatin, an indicator of plant defense response in Pea (Pisum sativum L.). Bio-protocol doi:10.21769/BioProtoc.2362
  4. Hadwiger LA, Tanaka K (2017) Nonhost resistance: DNA damage is associated with SA signaling for induction of PR genes and contributes to the growth suppression of a pea pathogen on pea endocarp tissue. Front. Plant Sci. 8: 446 doi:10.3389/fpls.2017.00446
  5. Tanaka K, Hadwiger LA (2017) Nonhost resistance: reactive oxygen species (ROS) signal causes DNA damage prior to the induction of PR genes and disease resistance in pea tissue. Physiol. Mol. Plant Pathol. 98: 18-24 doi:10.1016/j.pmpp.2017.01.007
  6. Moroz N, Fritch KR, Marcec MJ, Tripathi D, Smertenko A, Tanaka K (2017) Extracellular alkalinization as a defense response in potato cells. Front. Plant Sci. 8: 32 doi:10.3389/fpls.2017.00032
  7. Ramachandran SR, Yin C, Kud J, Tanaka K, Mahoney AK, Xiao F, Hulbert SH (2017) Effectors from wheat rust fungi suppress multiple plant defense responses. Phytopathology 107: 75-83 doi:10.1094/PHYTO-02-16-0083-R
  8. Nguyen CT, Tanaka K, Cao Y, Cho W-H, Xu D, Stacey G (2016) Computational analysis of the ligand binding site of the extracellular ATP receptor, DORN1. PLoS One 11: e0161894 doi:10.1371/journal.pone.0161894
  9. Tanaka K*, Cho S-H*, Lee H, Pham AQ, Batek JM, Cui S, Qiu J, Khan SM, Joshi T, Zhang ZJ, Xu D, Stacey G (2015) Effect of lipo-chitooligosaccharide on early growth of C4 grass seedlings. J. Exp. Bot. 66: 5727-38 *equal contribution doi:10.1093/jxb/erv260
  10. Hadwiger LA, Tanaka K (2015) EDTA a novel inducer of pisatin, a phytoalexin indicator of the non-host resistance in peas. Molecules 20: 24-34 doi:10.3390/molecules20010024
  11. Tanaka K, Tóth K, Stacey G (2015) Role of ectoapyrases in nodulation. In Biological Nitrogen Fixation (ed. F. J. de Bruijn), John Wiley & Sons, Inc, Hoboken NJ, USA, Vol 2, pp. 517-25 (Chapter 52). doi:10.1002/9781119053095.ch52
  12. Tanaka K (2014) FIRST AUTHOR’S [in Japanese] doi:10.7875/first.author.2014.020
  13. Cao Y*, Liang Y*, Tanaka K*, Nguyen CT, Jedrzejczak RP, Joachimiak A, Stacey G (2014) The kinase LYK5 is a major chitin receptor in Arabidopsis and forms a chitin-induced complex with related kinase CERK1. eLife 3: e03766 *equal contribution doi:10.7554/eLife.03766
  14. Choi J, Tanaka K, Liang Y, Cao Y, Lee SY, Stacey G (2014) Extracellular ATP, a danger signal, is recognized by DORN1 in Arabidopsis. Biochem. J. 463: 429-37 doi:10.1042/BJ20140666
  15. Tanaka K, Choi J, Cao Y, Stacey G (2014) Extracellular ATP acts as a damage associated molecular pattern (DAMP) signal in plants. Front. Plant Sci. 5: 466 doi:10.3389/fpls.2014.00446
  16. Liang Y, Tóth K, Cao Y, Tanaka K, Espinoza C, Stacey G (2014) Lipochitooligosaccharide recognition: an ancient story. New Phytol. 204: 289-96 doi:10.1111/nph.12898
  17. Cao Y*, Tanaka K*, Nguyen CT, Stacey G (2014) Extracellular ATP is a central signaling molecule in plant stress responses. Curr. Opin. Plant Biol. 20: 82-7 *equal contribution doi:10.1016/j.pbi.2014.04.009
  18. Choi J*, Tanaka K*, Cao Y, Qi Y, Qiu J, Liang Y, Lee SY, Stacey G (2014) Identification of a plant receptor for extracellular ATP. Science 343: 290-4 *equal contribution doi:10.1126/science.343.6168.290
  19. Wang J, Tóth K, Tanaka K, Nguyen CT, Yan Z, Brechenmacher L, Dahmen J, Chen M, Thelen JJ, Qiu L, Stacey G. (2014) A Soybean acyl carrier protein, GmACP, is important for root nodule symbiosis. Mol. Plant-Microbe Int. 27: 415-23 doi:10.1094/MPMI-09-13-0269-R
  20. Liang Y, Cao Y, Tanaka K, Thibivilliers S, Wan J, Choi J, Kang CH, Qiu J, Stacey G (2013) Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341: 1384-7 doi:10.1126/science.1242736
  21. Tanaka K, Nguyen CT, Liang Y, Cao Y, Stacey G (2013) Role of LysM receptors in chitin-triggered plant innate immunity. Plant Signal. Behav. 8: e22598 doi:10.4161/psb.22598
  22. Tanaka K, Choi J, Stacey G (2013) Aequorin luminescence-based functional calcium assay for heterotrimeric G-proteins in Arabidopsis. In G Protein-Coupled Receptor Signaling in Plants: Methods and Protocols (ed. M.P. Running). Methods Mol. Biol., Humana Press, New York, Vol 1043, pp. 45-54 (Chapter 5) doi:10.1007/978-1-62703-532-3_5
  23. Nguyen THN, Brechenmacher L, Aldrich J, Clauss T, Gritsenko M, Hixson K, Libault M, Tanaka K, Yang F, Yao Q, Paša-Tolić L, Xu D, Nguyen HT, Stacey G (2012) Quantitative Phosphoproteomic Analysis of Soybean Root Hairs Inoculated with Bradyrhizobium japonicum. Mol. Cell. Proteomics 11: 1140-55 doi:10.1074/mcp.M112.018028
  24. Wan J*, Tanaka K*, Zhang X, Son GH, Brechenmacher L, Nguyen THN, Stacey G (2012) LYK4, a lysin motif receptor-like kinase, is important for chitin signaling and plant innate immunity in Arabidopsis. Plant Physiol. 160: 396-406 *equal contribution doi:10.1104/pp.112.201699
  25. Yoshimitsu Y, Tanaka K, Fukuda W, Asami T, Yoshida S, Hayashi K, Kamiya Y, Jikumaru Y, Shigeta T, Nakamura Y, Matsuo T, Okamoto S (2011) Transcription of DWARF4 plays a crucial role in auxin-regulated root elongation in addition to brassinosteroid homeostasis in Arabidopsis thaliana. PLoS One 6: e23851 doi:10.1371/journal.pone.0023851
  26. Tanaka K, Nguyen THN, Stacey G (2011) Enzymatic role for soybean ecto-apyrase in nodulation. Plant Signal. Behav. 6: 1034-6 doi:10.4161/psb.6.7.15601
  27. Tanaka K, Nguyen CT, Libault M, Cheng J, Stacey G (2011) Enzymatic activity of the soybean ecto-apyrase GS52 is essential for stimulation of nodulation. Plant Physiol. 155: 1988-98 doi:10.1104/pp.110.170910
  28. Tanaka K, Swanson SJ, Gilroy S, Stacey G (2010) Extracellular nucleotides elicit cytosolic free calcium oscillations in Arabidopsis. Plant Physiol. 154: 705-19 doi:10.1104/pp.110.162503
  29. Tanaka K, Gilroy S, Jones AM, Stacey G (2010) Extracellular nucleotide signaling in plants. Trends Cell Biol. 20: 601-8 [Cover of the issue] doi:10.1016/j.tcb.2010.07.005
  30. Yoshimitsu Y, Tanaka K, Takashi T, Nakamura Y, Matsuo T, Okamoto S (2009) Improvement of DNA/metal particle adsorption in tungsten-based biolistic bombardment; alkaline pH is necessary for DNA adsorption and suppression of DNA degradation. J. Plant Biol. 52: 524-32 doi:10.1007/s12374-009-9068-0
  31. Govindarajulu M, Kim SY, Libault M, Berg RH, Tanaka K, Stacey G, Taylor CG (2009) GS52 ecto-apyrase plays a critical role during soybean nodulation. Plant Physiol. 149: 994-1004 doi:10.1104/pp.108.128728
  32. Nakamura Y, Nakamura K, Asai Y, Wada T, Tanaka K, Matsuo T, Okamoto S, Meijer J, Kitamura Y, Nishikawa A, Park EY, Sato K, Ohtsuki K (2008) Comparison of the glucosinolate–myrosinase systems among daikon (Raphanus sativus, Japanese white radish) varieties. J. Agric. Food Chem. 56: 2702-7 doi:10.1021/jf7035774
  33. Okamoto S, Tanaka K, Nakamura Y, Matsuo T (2007) Research progress and agricultural application of brassinosteroids. Agriculture and Horticulture (Nogyo Oyobi Engei; ISSN: 0369-5247) 82: 641-52 [in Japanese] http://agriknowledge.affrc.go.jp/RN/2010741151.pdf
  34. Okamoto S, Tanaka K, Matsuo T (2007) The mechanisms underlying the regulation of endogenous levels of brassinosteroids. Chemistry and Biology (Kagaku-To-Seibutsu) 45: 34-42 [in Japanese] doi:10.1271/kagakutoseibutsu1962.45.34
  35. Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T, Okamoto S (2005) Brassinosteroid homeostasis in Arabidopsis in ensured by feedback expressions of multiple genes involved in its metabolism. Plant Physiol. 138: 1117-25 doi:10.1104/pp.104.058040
  36. Okamoto S, Tanaka K, Tsuruyama K, Nakamura Y, Matsuo T (2005) Development and evaluation of a novel experimental system to control rosette leaf initiation in Arabidopsis. Plant Sci. 168: 37-44 doi:10.1016/j.plantsci.2004.07.010
  37. Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S (2003) Physiological role of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-growth hypocotyl elongation. J. Plant Growth Regul. 22: 259-71 doi:10.1007/s00344-003-0119-3