Skip to main content Skip to navigation
Department of Plant Pathology Molecular Plant Pathology Laboratory

Tanaka Lab – Personnel


Natalia Moroz

Research Associate

Contact Information

WSU Plant Pathology
PO BOX 646430
Pullman, WA, 99163-6430
Office – Plant Sciences Building 251
Lab – Plant Sciences Building 215 & 235
Phone: (509) 335-5813 | Fax: (509) 335-9581

natalia.moroz [at]

  • 1998 Ph.D. (Chemistry), Department of Chemistry, Moscow State University, Russia
  • 1991 B.S. (Chemistry), Department of Chemistry, Kyrgyz State University, Frunze (now Bishkek), Kyrgyzstan
Professional Experience
  • 2015-Present   Research Associate, Department of Plant Pathology, Washington State University, Pullman, WA
  • 2012-15            Postdoctoral Research Associate, Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA
  • 2010-11            Research Associate III, Neuroscience and Cell Biology Department, Rutgers Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, NJ
  • 2008-09            Research Scholar, W.M. Burke Medical Research Institute, Cornell University Medical College, White Plains, NY
  • 2004-08            Lumtek, LLC, Moscow, Russia
  • 1997-2008       Senior Research Scientist, Chemistry Department, Moscow State University, Russia
Academic Honors, Awards, and Achievements
  • Postdoc Travel Award to attend American Society for Cell Biology. New Orleans, LN, USA (2013)
  • PhD student Travel Award to attend XIII International Congress on Fibrinolysis and Thrombolysis. Barcelona, Spain (1996)
  • PhD student Travel Award to attend III International Union of Biology and Molecular Biology Conference “Molecular Recognition”. Singapore (1995)
Teaching Experience
  • Guest lecturer for HONORS 390 Global Issues in the Sciences at WSU, Pullman, WA (2016, 2017, 2021)
  • Guest lecturer for Pl_P 535 Molecular Genetics of Plant-Pathogen Interactions at WSU, Pullman, WA (2016)
  • Guest lecturer for BE 481 Protein Bioengineering, Chemical Engineering and Bioengineering, at WSU, Pullman, WA (2014)
Current Research Focus
  • Improved disease control strategies for potato powdery scab and silver scurf
Profile links

Loop | ResearchGate | LinkedIn

  1. Basu S, Moroz N, Lee BW, Tanaka K, Oeller L, Baerlocher C, Crowder DW (2023) Diversity and traits of multiple biotic stressors elicit differential defense responses in legumes. Agriculture 13: 2093
  2. Braley LE, Jewell JB, Figueroa J, Humann JL, Main D, Mora-Romero GA, Moroz N, Woodhall JW, White RA III, Tanaka K (2023) Nanopore sequencing with GraphMap for comprehensive pathogen detection in potato field soil. Plant Dis. 107: 2288-2295 doi:10.1094/PDIS-01-23-0052-SR
  3. Tanaka K, DeShields JB, Moroz N, Woodhall JW (2022) Isothermal amplification for potato disease diagnosis: what have we learned from detection of the powdery scab pathogen? Potato Progress 22 (4) doi:10.7273/000004646
  4. Combest MM, Moroz N, Tanaka K, Rogan CJ, Anderson JC, Thura L, Rakotondrafara AM, Goyer A (2021) StPIP1, a PAMP-induced peptide in potato, elicits plant defenses and is associated with disease symptom severity in a compatible interaction with potato virus Y. J. Exp. Bot. 72: 4472-4488 doi:10.1093/jxb/erab078
  5. Zhang L, Fahy D, Koteyeva N, Moroz N, Kuchařová A, Manoilov E, Smertenko P, Galva G, Šamaj J, Kostyukova AS, Sedbrook JC, Smertenko A (2021). Analysis of formins role during cytokinesis using specific inhibitor SMIFH2. Plant Physiol. doi:10.1093/plphys/kiab085
  6. Tolkatchev D, Kuruba B, Smith GE Jr, Swain KD, Smith KA, Moroz N, Williams TJ, Kostyukova AS (2020). Structural insights into the tropomodulin assembly at the pointed ends of actin filaments. Protein Sci. 2020: 1-15 doi:10.1002/pro.4000
  7. Moroz N, Tanaka K (2020) FlgII-28 is a major flagellin-derived defense elicitor for potato. Mol. Plant-Microbe Int. 33: 247-255 doi:10.1094/MPMI-06-19-0164-R
  8. DeShields JB, Moroz N, Braley LE, Mora-Romero GA, Tanaka K (2019) Recombinase polymerase amplification (RPA) for the rapid isothermal detection of Spongospora subterranea f. sp. subterranea and potato mop-top virus. Am. J. Potato Res. 96: 617-624 doi:10.1007/s12230-019-09750-7
  9. DeShields JB, Bomberger RA, Woodhall JW, Wheeler DL, Moroz N, Johnson DA, Tanaka K (2018) On-site molecular detection of soil-borne phytopathogens using a portable real-time PCR system. J. Vis. Exp. e56891 doi:10.3791/56891
  10. Moroz N, Huffaker A, Tanaka K (2017) Extracellular alkalinization assay for detection of early defense response. Curr. Protoc. Plant Biol. 2: 210-220 doi:10.1002/cppb.20057
  11. Moroz N, Fritch KR, Marcec MJ, Tripathi D, Smertenko A, Tanaka K (2017) Extracellular alkalinization as a defense response in potato cells. Front. Plant Sci. 8: 32 doi:10.3389/fpls.2017.00032
  12. Ly T*, Moroz N*, Pappas CT, Novak SM, Tolkatchev D, Wooldridge D, Mayfield RM, Helms G, Gregorio CC, Kostyukova AS (2016) The N-terminal tropomyosin- and actin-binding sites are important for leiomodin 2’s function. Mol. Biol. Cell 27: 2565-75 *equal contribution doi:10.1091/mbc.E16-03-0200
  13. Colpan M, Moroz NA, Gray KT, Cooper DA, Diaz CA, Kostyukova AS (2016) Tropomyosin-binding properties modulate competition between tropomodulin isoforms. Arch. Biochem. Biophys. 600: 23-32 doi:10.1016/
  14. Colpan M, Tolkatchev D, Grover S, Helms G, Cort J, Moroz N, Kostyukova AS (2016). Localization of the Binding Interface between Leiomodin-2 and alpha-Tropomyosin. Biochem. Biophys. Acta 1864: 523-30 doi:10.1016/j.bbapap.2016.02.009
  15. Hushpulian DM, Zakharyants AA, Smirnova NA, Poloznikov AA, Moroz NA, Tishkov VI, Gazaryan IG (2015) Reactivation of HIF prolyl hydroxylase 2 from E.coli inclusion bodies. Russ Chem Bull 64, 1671–7 doi:10.1007/s11172-015-1058-4
  16. Yuen M, Sandaradura SA, Dowling JJ, Kostyukova AS, Moroz N et al. (2014) Leiomodin-3 dysfunction results in thin filament disorganization and nemaline myopathy. J. Clinic. Invest. 124: 4693-708 doi:10.1172/JCI75199
  17. Guillaud L, Gray KT, Moroz N, Pantazis C, Pate E, Kostyukova AS (2014) Role of Tropomodulin’s Leucine Rich Repeat Domain in the Formation of Neurite-like Processes. Biochemistry 53: 2689-700 doi:10.1021/bi401431k
  18. Galeva A, Moroz N, Yoon Y-H, Hughes KT, Samatey FA, Kostyukova AS (2014) Bacterial flagellin-specific chaperone FliS interacts with anti-sigma factor FlgM. J. Bacteriol. 196: 1215–21 doi:10.1128/JB.01278-13
  19. Colpan M, Moroz N, Kostyukova AS (2013) Tropomodulins and Tropomyosins: Working as a team. J. Muscle Res. Cell Motility 3: 247-60 doi:10.1007/s10974-013-9349-6
  20. Moroz N, Novak S, Azevedo R, Colpan M, Uversky V, Gregorio C, Kostyukova AS (2013) Alteration of tropomyosin-binding properties of tropomodulin1 affects its capping ability and localization in skeletal myocytes. J. Biol. Chem. 288: 4899-907 doi:10.1074/jbc.M112.434522
  21. Moroz N, Guillaud L, Desai B, Kostyukova AS (2013) Mutations changing tropomyosin affinity in site 1 of tropomodulin alter neurite formation and extension. Peer J. 1: e7 doi:10.7717/peerj.7
  22. Tsukada T, Pappas CT, Moroz N, Antin PB, Kostyukova AS, Gregorio CC (2010) Leiomodin-2 is an antagonist of tropomodulin-1 at the pointed end of the thin filaments in cardiac muscle. J. Cell Sci. 123: 3136-45 doi:10.1242/jcs.071837
  23. Smirnova N, Rakhman I, Moroz N, Basso M, Payapilli J, Hernandes-Guzman F, Kazakov S, Gaysina I, Ratan R, Gazaryan I (2010) Utilization of an in vivo reporter for high-throughput screen for HIF stabilizers: identification of novel group of branched HIF prolyl hydroxylase inhibitors. Chemistry & Biology 17: 380–91 doi:10.1016/j.chembiol.2010.03.008
  24. Moroz NA, Gursky DY, Ugarova NN (2008) Stabilization of ATP- Reagents containing firefly luciferase Luciola mingrelica by polyols. Moscow University Chemistry Bulletin 49: 86-90 doi:10.3103/S0027131408020041
  25. Froundjian VG, Lomakina GY, Moroz NA, Ugarova NN (2005) Bioluminescence assay of microbial contamination of force-meat. Meat Industry 2: 54-57
  26. Gladysheva IP, Moroz NA, Karmakova TA, Nemtsova ER, Yakubovskaya RI, Larionova NI (2002) Immunoconjugates of soybean Bowman-Birk protease inhibitor as targeted antitumor polymeric agents. J. Drug Target. 9: 303-16 doi:10.3109/10611860108998767
  27. Balabushevitch NG, Sukhorukov GB, Moroz NA, Kazanskaya NF, Larionova NI, Volodkin DV, Donath E, Mehwald H (2001) Encapsulation of proteins by layer-by-layer adsorption of polyelectrolytes onto protein aggregates: Factors regulating the protein release. Biotechnology and Bioengineering 76: 207-13 doi:10.1002/bit.1184
  28. Gladysheva IP, Moroz NA, Papisova AI, Larionova NI (2001) Soybean Bowman-Birk inhibitor conjugates with clinical dextran: synthesis and antiproteolytic activity. Biochemistry (Moscow) 66: 384-9 doi:10.1023/A:1010241127300
  29. Gladysheva IP, Balabushevich NG, Moroz NA, Larionova NI (2000) Isolation and characterization of soybean Bowman-Birk inhibitor from different sources. Biochemistry (Moscow) 65: 198-203 PMID:10713547
  30. Larionova NI, Moroz NA, Tyurina OP (1999) Molecular design, characterization activity of conjugates of protein proteinase inhibitors. S. T. P. Pharma Sci. 9: 65-80
  31. Kil’deeva NR, Trusova SP, Gorchakova VA, Khomyakov KP, Larionova NI, Balabushevitch NG, Moroz NA, Virnik AD (1997) Multicomponent Polymer Systems Containing Biologically Active Proteins and Antimicrobial Compounds. Applied Biochem. Microbiol. 33: 433-6 doi:10.1007/BF02785695
  32. Balabushevitch NG, Kildeyeva NR, Moroz NA, Trusova SP, Khromov GL, Larionova NI (1996) Regulating Aspects of Biosoluble and Insoluble Film Release Systems Containing Protein Proteinase Inhibitor. Applied Biochem. Biotech. 61: 129-38 doi:10.1007/BF02785695
  33. Larionova NI, Moroz NA, Balabushevitch NG, Khromov GL, Kildeyeva NR (1995) Engineering-Enzymological Approach to the Design of Polymeric Forms of Aprotinin. Vestnik Moskovskogo Universiteta Seriya 2 Khimiya 36: 139-44
  34. Larionova NI, Balabushevitch NG, Gladysheva IP, Moroz NA, Kazanskaya NF, Polekhina OV, Donetsky IA (1994) Natural Protease Inhibitors as a Basis for the New Drug Synthesis. Voprosi Med. Khimii 40: 25-31 PMID: 7521547