Skip to main content Skip to navigation
Department of Physics and Astronomy Collins Research Group

WSU Science Ambassadors promote solar science

This spring at local schools, the WSU Science Ambassadors took part in K-8 activities promoting the science of solar power. The team provided a Solar Derby activity created by Washington’s Clean Energy Institute. The events took place at Franklin Elementary School for their Science Fair and separately at Lincoln Middle School at the Palouse Family Fair, both in Pullman, WA. As seen in the pictures below, beyond kids and their families, even Butch the Cougar was able to participate in the activity.

 

Collins Group Presents at 2019 APS March Meeting

Thomas Ferron, Victor Murcia, Terry McAfee, and Brian Collins all presented at the 2019 APS March Meeting in Boston, MA. Victor, Terry, and Brian all presented in the Focus Session on “Advanced Morphological Characterization in Polymers” where Brian gave the Invited Talk for the session.

Victor presented his work on combining NEXAFS measurements and DFT of molecules to create more accurate optical models for analysis of polarized resonant soft X-ray scattering (RSoXS). Terry discussed his work with developing in-situ capabilities in RSoXS showing quantitative characterization of polymer micelle structure and dynamics without using chemical labels.

Thomas presented in the Focus Session on Organic Electronics where he discussed his recent paper on charge separation affected by molecular mixing at the donor-acceptor interface in organic photovoltaic devices.

Thomas’ organic solar cell work published in J Materials Chemistry

Graduate student Thomas Ferron’s work tying molecular mixing at interfaces to charge generation in organic solar cells (OSC) has been published in Journal of Materials Chemistry A. The work quantifies for the first time both the volume of the mixed phase and the efficiency of separating interfacial Charge Transfer states into free charges. A better than 99% correlation is revealed between these two phenomena in a model OSC system – made possible because both nanostructure and excited state dyanmics were measured on the exact same devices. Thomas’ analysis, furthermore, eliminates all other possible contributing factors to the correlation – implying a causal relationship that sharper interfaces (less mixing) causes higher charge separation efficiencies.

Critical to the study was a relatively new optical pump-electronic probe technique known as Time-Delayed Collection Field (TDCF). Although the technique is increasingly done around the world, the Collins group is the only one capable of the measurement in the US.  This is Thomas’ second 1st-Author paper published and includes as coauthors a former Undergraduate physics major Matthew Waldrip and former Masters student Michael Pope. The work was funded by the US Department of Energy as an Early Research Career Award. Congratulations to all involved!

Home

Welcome to the Collins Group at Washington State University. Our research is highly interdisciplinary, straddling physics, materials science, electrical engineering and chemistry. We specialize in developing and using synchrotron X-ray techniques to investigate carbon-based materials designed to have novel optoelectronic properties. We strive to understand how interactions of organic molecules and polymers in aggregate and at interfaces govern the creation, transport, and annihilation of excited and charged states that result in power generation/storage, illumination, sensing and information processing.

Recent News

  • Collins Group Presents at REXS

    Several Members of the Collins Group presented their work at the International Conference on Resonant Elastic X-ray Scattering hosted by Brookhaven National Laboratory in Riverhead, NY. Thomas Ferron, Victor Murcia, and Terry McAfee along with Brian each presented oral presentations in the plenary-only conference of ~120 attendees.

    Read Story
  • Xiaobo visit from Jiaotong University

    Graduate student Xiaobo from the Ma Wei Group at Jiaotong University in Xi’an, China visited the lab. He is taking part in a collaboration to measure device physics on his high performing non-fullerene organic solar cells, and taught us a considerable amount on preparing high-performance (>15%) solar cells.

    Read Story